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TECHNICAL MEMORANDUM

ANALYSIS OF GRAPHITE-REINFORCED CEMENTITIOUS COMPOSITES

1. THE PROBLEM

1.1 Introduction

In research on composite beams, Biszick I noted that the transform section method did not

accurately predict the behavior of the test articles being considered. Biszick documented that a highly

efficient structure; i.e., weight and strain energy, could be developed using a matrix with a very low

Young's modulus (El) and reinforcement with a very high Young's modulus (E2). These test articles

were cementitious beams reinforced with a graphite mesh. The graphite mesh was used in the same way

as steel mesh in conventional reinforced concrete; i.e., the reinforcement reacts on the tensile loads,

while the concrete reacts on the compressive loads. Significant differences should be noted between a

graphite mesh and a similar steel mesh. First, the graphite mesh has no bending or compression stiffness.

The mesh drapes, if not supported, and does not resist a compressive force; i.e., cloth. Second, the

graphite appears to be saturated by the cement (matrix), such that an adhesive bond forms between the

cement and graphite. The cementitious mix used in the test articles was also unique and exhibited ductile

properties. Biszick's research showed conclusively that maintaining a high elastic modulus ratio (77),

i.e., Efiber/Ematrix, between the matrix and the reinforcement results in efficient composite structures. It

follows then, to fully utilize this discovery, the analytical methods must be understood and developed.

This Technical Memorandum (TM) investigates the analytical methods for the analysis of

graphite-reinforced cementitious composites where high t/'s are employed. A sample problem will

demonstrate the transform section method of analysis. A finite element model will then be developed

and the results compared to the transform section method of analysis. The errors associated with the

transform section method and high t/'s will be demonstrated. Alternative methods of analysis will then

be investigated. The rule of mixtures 24 will be applied to a graphite-reinforced cementitious composite

to calculate effective material properties. These properties will be introduced into the transform section

method and the results compared to finite element methods and beam testing. Laminated composite plate

theory will then be discussed and applied to the graphite-reinforced cementitious composite. It will be

shown that laminated plate theory for composites can successfully be applied to this type of composite.

Extensive experimentation is used to develop the material properties used in the laminated plate theory.

Graphite-reinforced cementitious composite beams are analyzed using classical composite methods and

compared to finite element methods and experimental results.



1.2 Problem Statement

Section 1.2 illustrates a problem with the analysis of a composite beam that has a high elastic

modulus ratio. First, the expression for the moment of inertia (I) is derived in terms of q. The moment

of inertia is then used to calculate the deflection of a beam subjected to pure bending. The deflection of

the beam is calculated as q ranges from 1 to 1,000. The analysis is then repeated using a finite element

model. The conclusion is made that the transform section method of analysis is not accurate for q > 20.

1.3 Composite Beam

Figure 1 illustrates a beam composed of two different materials. Since the beam is subjected to

boundary conditions and loads to produce pure bending between the supports (fig. 2), the transform

section property method may be used to determine the deflection in the beam for each of the load cases

described in table 1. These results can be compared to those obtained from a finite element model. 5

0.25in.

0.5in.

0.25in.

E2

E1

E2

0.25in.ml_

1 in.

Figure 1. Beam cross section.

Force Force

.91-a

q 10in.

Figure 2. Beam in pure bending.

2



Table 1. Loads and deflections for transform section method.

Case

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

E2

3.00E+07 3.00E+07

1.50E+07 3.00E+07

7.50E+06 3.00E+07

3.00E+06 3.00E+07

2.14E+06 3.00E+07

1.50E+06 3.00E+07

1.00E+06 3.00E+07

7.50E+05 3.00E+07

3.75E+05 3.00E+07

3.00E+05 3.00E+07

2.50E+05 3.00E+07

1.50E+05 3.00E+07

1.36E+05 3.00E+07

1.00E+05 3.00E+07

7.50E+04 3.00E+07

6.00E+04 3.00E+07

5.00E+04 3.00E+07

3.00E+04 3.00E+07

Flange _ Deflection

1 0.347 0.0289 9.22722E-03

2 0.694 0.0542 9.84010E-03

4 1.388 0.1048 1.01781E-02

10 3.470 0.2566 1.03923E-02

14 4.858 0.3578 1.04341E-02

20 6.940 0.5097 1.04657E-02

30 10.410 0.7627 1.04904E-02

40 13.880 1.0157 1.05028E-02

80 27.760 2.0278 1.05215E-02

100 34.700 2.5338 1.05252E-02

120 41.640 3.0399 1.05277E-02

200 69.400 5.0640 1.05327E-02

220 76.340 5.5701 1.05334E-02

300 104.100 7.5942 1.05352E-02

400 138.800 10.1244 1.05364E-02

500 173.500 12.6547 1.05372E-02

600 208.200 15.1849 1.05377E-02

1,000 347.000 25.3057 1.05387E-02

1.4 Analysis Using the Transform Section Method

The equation for the deflection (Ymax) of a beam (fig. 3) in pure bending can be derived using

the elastic curve equations and the boundary conditions:

Pax

Ymax - (L - x) •
2Eli

Force

(1)

•,,II,-- a

x

q x

Figure 3. Free-body diagram.

D,



The effective value of the moment of inertia can be calculated using the transform section

method; 6 A 1 and A 3 axe made from a material with properties of E 2. A 2 is made from a material with

properties of E 1. The original cross section of the beam (fig. 4) is modified per the transform section

method. The moment of inertia is then calculated from the new geometry and summarized below:

• Material properties of the composite beam: E 1 = 360 × 103 lbf/in. 2, E 2 = 30 × 106 lbf/in. 2

• Transform section ratio: t1= E2/E1, 77= 83.33

• Width of the composite beam: /_ = 0.347 in.

• Moment of inertia calculation:

_0+5I1= O+25y2rlfl dY

= 3.645× 10-2 t/fl

I1 = 1.045 in.4

f0+25
12 = a-0+25y2fl dy

= 1.0416 × lO-2fl

12 = 0.004 in.4

e-0.25 2
I3=Jo+5 Y rl_ dy

= 3.645 × 10-27/]3

13 = 1.045 in.4

1=11+12+13 I = 2.112 in.4

Figure 4. Transform section geometry.

It should be noted that the middle section of the beam (A2) is independent of 77.As t 1increases,

section A 2 becomes insignificant. The expression for I can be written in terms of 77as follows:
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I = 3.645 × 10-27/fl + 1.0416 × 10-2fl + 3.645 × 10-27/fl

Let/_ = 0.347 in., then

I = 7.29×10-27/fl +1.0416×10-2fl . (2)

I = 2.53 × 10-2//+ 3.6 × 10-3 in. 4

Now this expression can be substituted into the elastic curve equation:

(3)

Ymax = 2E 1(0.002531/+ 0.0036)
(4)

E 2
Since 77=--,

E 1

>(L/Ymax = 2El (O.OO25 3( E2/ E1) + O.O036 -2

so that

Ymax = 0.0506E2 + 0.0072E1

Equation (6) is used in a Microsoft ® Excel spreadsheet to calculate the deflection for each case.

As shown in table 1, E 2 remains constant while E 1 decreases. As the Young's modulus ratio (77)

increases from 1 to 1,000, the deflection value increases to 0.015 in. and then becomes essentially

constant.

(5)

(6)

1.5 Analysis Using the Finite Element Method

A finite element model of the beam was generated using the MSC/Nastran finite element code. 5

The model is composed of quad4 plate elements with loads and constraints (fig. 5). The model returned

a maximum deflection of 9.19 × 10 3 for 77= 1. The results of the finite element model can be compared

to the results from the elastic curve equation for the same case:

Error% =
Ymodelymodel-Yequation × 100% = 0.009190__._.__0____-0.00922

× 100% = 0.39% . (7)



9.19-03
. . +03

Y

Izx
DefaultDeformation:
Max9.19-03 @ Nd 103

Figure 5. Finite element model.

The analysis of the first case indicates that the transform section method and the finite element

model are in good agreement. The finite element model was mn for each of the 18 cases. The results

were tabulated in the Excel spreadsheet (table 2).

Case

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Table 2. Results of the finite element analysis.

3.00E+07 3.00E+07

1.50E+07 3.00E+07

7.50E+06 3.00E+07

3.00E+06 3.00E+07

2.14E+06 3.00E+07

1.50E+06 3.00E+07

1.00E+06 3.00E+07

7.50E+05 3.00E+07

3.75E+05 3.00E+07

3.00E+05 3.00E+07

2.50E+05 3.00E+07

1.50E+05 3.00E+07

1.36E+05 3.00E+07

1.00E+05 3.00E+07

7.50E+04 3.00E+07

6.00E+04 3.00E+07

5.00E+04 3.00E+07

3.00E+04 3.00E+07

1 0.0289

2 0.0542

4 0.1048

10 0.2566

14 0.3578

20 0.5097

30 0.7627

40 1.0157

80 2.0278

100 2.5338

120 3.0399

200 5.0640

220 5.5701

300 7.5942

400 10.1244

500 12.6547

600 15.1849

1,000 25.3057

Deflection Model

9.22722E-03 9.19E-03

9.84010E-03 9.78E-03

1.01781E-02 1.01E-02

1.03923E-02 1.02E-02

1.04341E-02 1.02E-02

1.04657E-02 1.02E-02

1.04904E-02 1.04E-02

1.05028E-02 1.06E-02

1.05215E-02 1.19E-02

1.05252E-02 1.29E-02

1.05277E-02 1.39E-02

1.05327E-02 1.84E-02

1.05334E-02 1.96E-02

1.05352E-02 2.42E-02

1.05364E-02 2.96E-02

1.05372E-02 3.44E-02

1.05377E-02 3.85E-02

1.05387E-02 4.86E-02

Error

(%)

-0.39

-0.66

-1.10

-2.01

-2.30

-2.24

-1.29

0.51

11.88

18.16

24.15

42.76

46.26

56.54

64.44

69.35

72.59

78.31



The deflection values from the two methods of analysis are plotted as 77increases from 1 to 80.

Figure 6 illustrates that the transform sections method of analysis results in a constant deflection as 77

approaches 20. The finite element model and the transform section method axe in reasonable agreement

until 77reaches 40. Beyond 40 the significant differences in the analysis methods axe obvious.

1.25E-02

1.20E-02

1.15E-02
,._
'._,,
= 1.10E-02

1.05E-02

_D

E 1.00E-02

._E 9.50E-03
x

9.00E-03

8.50E-03

8.00E-03

Transform Section • Finite Element Model

..... i .................................................................

 iiiiiiiiiiiiiiiiiiiiiiiiiilli..................................i........
........ i ....................................................................

I I I I I I I f
0 10 20 30 40 50 60 70 80 90

Stiffness Ratio

Figure 6. Comparison of transform section method to finite element methods.

This sample problem illustrates the current state of the art for the analysis of graphite-reinforced

cementitious materials. This analysis leads to the conclusion that the transform section method of analy-

sis is not adequate for the analysis of graphite-reinforced cementitious composites. The literature search

included in section 2 was undertaken to determine an altemate approach.
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2. LITERATURE REVIEW

Section 2 provides the background necessary to develop an understanding of the process required

to analyze graphite-reinforced cementitious composites. The basic theories used in the analysis are

discussed to provide context for subsequent derivation. The material presented here is intended to give
the reader a sense of direction for this TM.

2.1 Introduction

A fiber-reinforced material consists of two components: fiber and cement. The cement fills the

space around the fibers and keeps them in position. The hardened cement adheres to the fibers, allowing

a transfer of load. The type of fiber reinforcement may consist of a variety of materials: steel bars, glass

fabric, ceramic whiskers, or carbon strands, to name a few. There aye many types of cement as well,

including epoxy, polyesters, aluminum alloys, and cementitious materials. In general, the cement mate-

rial is isotropic while the fibers aye longitudinal components that can react to forces along their axes.

The fibers aye typically much stronger and stiffer than the cement. The material properties of the fiber-

reinforced composite are typically orthotropic in nature. The elastic properties of the composite depend

on the properties of its constitutive materials, the mix ratio of the components, and the orientation of the
fibers.

The literature associated with composite analysis and development covers a phenomenal range

of applications, from the International Space Station to the common kitchen sink. However, the one

common and elusive goal of researchers is to develop a method to predict the elastic properties of a

composite from the properties and geometry of the constitutive materials. The purpose of this literature

search is to determine which methods will most likely work for the graphite cementious materials being
considered in this TM.

2.2 Structural Engineering Approach

The structural engineering approach is illustrated in the transform section method of analysis

(sec. 1.3). The most common form of the equation is explained in detail by Beer and Johnston. 6 This

approach is often associated with the analysis of steel bays embedded in a concrete matrix. Allen and

Haisler 7 modify the approach in a concept referred to as the modulus weighted section properties. In this

approach, the beam is divided into discrete homogeneous parts (fig. 7). The modulus weighted section

properties are then defined in terms of the Young's modulus ratios as follows:

rz E

A* = i_=l - lE1A .z
(8)
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Figure 7. Composite cross section for weight modulus properties.

This method of determining the section properties for a composite beam is considerably more

complex than methods described by Beer and Johnston. 6 However, the elastic modulus ratio (77= E2/E1)

govems this equation, and as the value of 77increases, the accuracy of the method decreases.

Balaguru 2 developed another interesting approach to the analysis of composite beams.

Ferrocement is a composite material, consisting primarily of several layers of wire or fiberglass mesh

embedded in a cementitious matrix. Balaguru 2 developed an analytical model of the composite beams

from the stress-strain curves of the constitutive materials. The model uses section properties calculated

9



fromthetransformsectionmethod.However,Balaguru takes into account the nonlinear properties of the

materials. As the weaker of the materials becomes nonlinear, Young's modulus is recalculated. The new

value is used to determine the section properties for the nonlinear load. Balaguru's methods seemed

promising for the analysis of the composite considered here; particularly, since the method had been

used for the analysis of glass fibers with a cementitious matrix. However, on further investigation, 8 it

was found that the analytical method suffered from the same limitations as those encountered with the

transform section method. Nonetheless, Balaguru's methods were successfully used with a modified

transform section method (sec. 4.13) to determine the deflections of a composite beam considered here.

The common theory used for the structural engineering approach is the transform section

method. This approach is the primary cause of "the problem" discussed in section 1. Further investiga-

tion into the structural engineering approach would be unavailing.

2.3 Mechanics of Materials Approach to Composites

The mechanics of materials approach to composites is fundamentally different from the

structure's approach discussed previously. This approach is based on the mix ratio (volume fraction)

between the fiber and cementitious materials. The mechanics of materials approach is often referred to

as the rule of mixtures for composites. The goal of this theory is to determine the "effective" elastic

material properties: Young's modulus (E 1 and E2), shear modulus (G12), and Poisson's ratio (v12) from

the material properties of the fiber and cementitious material. Numerous examples for the mechanics of

materials approach can be found in the literature, 9,1° and the method is explained in detail in section 4.

The literature is unanimous 2,9,1° in declaring this method accurate for determining the effective material

property E 1, provided the fibers are continuous and aligned in the direction of the load. The remaining

material properties, E 2, G12, and v12, may not be accurately predicted by the rule of mixtures. Although

Jones 1° provides detailed and convincing derivations for these material properties, he points out several

assumptions in the theory that would lead to errors in the calculation of the values. In addition, Jones 1°

strongly points to the need for experimental data to verify the results. Balaguru 4 provides the equations

to determine the value of El; however, he chose not to address the remaining properties. The literature

contains numerous variations on the rule of mixtures theory. These variations attempt to correct the

deficiencies in the theory.

Halpin_Tsai,9,11 for example, made significant contributions to the rule of mixture methods by

developing the Halpin-Tsai equations:

E 1 ----EfiberVfibe r + EmatrixVmatrix
(12)

V12 _ VfiberVfibe r + VmatrixVmatrix
(13)

E 2 _ (1 + gr/Vfibe r)

Ematrix (1 -//Vfiber) where"ber fiber/vEmatrix J\ Ematrix

(14)

10



( fiberl/f fiber+ /Gmatrix - (1 -//Vfiber) ' where 7/= -Gmatrix jkGmatrix
(15)

The measure of reinforcement (g) depends on the boundary conditions within the composite and

is an empirically derived value for the specific composite. Jones 1° provided sufficient evidence that these

equations axe accurate, provided g is available for the composite being considered. However, no data

were available for graphite-reinforced cementitious composites.

Another promising variation on the role of mixtures method is provided by Krenchel. 3 Krenchel

used an equilibrium approach that considered reinforcements in both the x and y directions. The methods

provided by Krenchel were applied to the composite considered here. The ply angles gt1 and gt2 axe

measured from the direction of the load. The/_ term represents the volume fraction for the fiber. The k

term is given by k = 1- j3 / (1 _ Vcomposite,2 and must be estimated since Vcomposit e is not known. The

following equations axe then solved simultaneously to determine Ecomposite:

• Stress in direction of force -x:

Ecomposite xEma ix+x+Vma ix y)+[Ef ber C°S( X)2( xc°S( X)

+[ f ber COS( 2)2( xcos( 2)2 sm( 2)2)] (16)

• Stress in transverse direction -y:

0= Ematrixk(Vmatrix8 x +Sy)+[Efiberflsin(l[tl)2(Sxcos(l[tl) 2 +By sin(1/tl)2)]

+[EfiberflCOS(llt2)2(Sxcos(llt2) 2 + 8y sin(I/t2)2)] (17)

Poisson's ratio:

-Ey

Vcomposite 8x (18)
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TheKrenchelapproachprovidessignificantpromisebecauseit considerstheloadsandforces
in bothdirections.His equationsweresolvedfor theexampleconsideredin section4.6andreturned
correctvaluesforE 1 and E 2 (app. A). However, the shear modulus (G12) returned the same value as the

previous methods. Additionally, Krenchel had no verification data for the shear modulus calculations.

In summary, it can be said that the mechanics of materials approach will provide a set of effec-

tive material properties for a fiber-reinforced composite. Balaguru 4 and Krenchel 3 applied the method

for fiber-reinforced cementious materials. Krenchel's methods can be manipulated to provide E 1 and E 2

for a composite. However, the literature indicates that estimates of the shear modulus and Poisson's ratio

were questionable. Researchers were unanimous in their endorsement of establishing an experimental

database for any composite being characterized for the first time.

2.4 Experimental Methods

The literature search for experimental methods concentrated on the standard test methods pub-

lished by the American Society for Testing and Materials (ASTM). Two ASTM standards described the

possible geometry of a tensile test specimen. ASTM Standard D 30395 recommended a tensile test

specimen with bonded tabs while ASTM Standard E812 established the dogbone geometry. The purpose

of both configurations is to provide a strong grip area, causing the specimen to strain and break in the

center. Bonding grip tabs to the cementitious specimens were found to be difficult and impractical. The

grips used on the tensile test machine limited the thickness of the tabs. One specimen with tab ends was

successfully tested. However, the machined dogbone specimens (sec. 3.3) were much easier to produce

and worked well. The ASTM recommendation to use extensometers to measure the strain was a signifi-

cant impact to the tensile test. The extensometers were found to be unreliable because the knife blades

would not grip the test article properly. Strain gauges provided a much more reliable method for strain

measurement (sec. 3.5). Strain gauge installation was achieved by following the recommendations

of Measurement Group Bulletin 309D. 13 In addition, Measurement Group Tech Tip TT-61114 was

reviewed for applicable information. Tech Tip TT-61114 appears more suitable for large concrete

structures.

Several experimental procedures for determining the shear modulus were offered by Jones. 10

The most compelling was producing a specimen with the fibers running at a 45 ° angle, and testing the

specimen as a tensile test. Jones 1° provides the necessary equations to determine the shear modulus.

However, ASTM standard D 5379-9315 recommended an Iosipescu shear test for determining the shear

modulus. On further investigations, it was found that the ASTM standard also had problems. Conaxlt and

Odom 16 identified numerous problems with the ASTM/Wyoming Iosipescu test fixture. The most

significant was the tendency for the specimen to twist during testing. They made improvements to the

design and termed it the Idaho shear test fixture. Ifju 17 describes a serious inadequacy in the instrumen-

tation recommended in the ASTM standard. 15 Ifju 18 demonstrated that by using a strain gauge rosette,

which covered the entire shear area, the accuracy of the test could be ensured. In addition, Ifju showed

that by placing these gauges on each side of the specimen, the effects of twisting could be removed.

It was concluded from the literature search that the ASTM standard tensile 5,12 and shear test 15

for a composite material were the most desirable methods for determining the material properties

12



for acompositematerial.Interestingly,no referencewasfoundtothesetestsbeingappliedto graphite-
basedcementitiouscomposites.

2.5 Laminated Plate Theory

Halpin, Jones, and Tsai 9 11 each considered the determination of the composite material proper-

ties as an intermediate step in the analysis of a composite. The next logical step is to use these effective

material properties to develop a laminated composite plate. Gurda119 pointed out that a significant

advantage of a composite material is the ability to optimize the geometry of the fibers for a given load-

ing condition. Krenchel's 3 equations provided a crude means to rotate fibers in a cementitious matrix.

However, his work was limited in that it assumes each layer will have the same geometry. The literature

search failed to find an example of the laminated composite plate theory being applied to a fiber-

reinforced cementitious composite.

The laminated plate theories provided by Jones 1° et al. 9'11,20 each contained similar derivations

and arrived at the same equations for determining the effective material properties of a laminated plate.

However, these authors each chose different methods to solve this complex system of equations. As

a result, there is a significant difference in the final effective properties determined by the authors.

Because of these conflicting results, the laminated plate theory is investigated. The equations axe

arranged in such a way as to allow an exact solution to be determined. In addition, Jones et al. developed

separate solutions, depending on whether the laminated plate was symmetric or nonsymmetric in nature.

It is not necessary to make that distinction for the equations developed here. As shown by Nettles, 2° the

laminated composite plate theory can be used to determine the deflections, stresses, and strains for the

multilayered composite plates. However, for complex loads or geometry, these methods axe difficult

to apply. The finite element methods offer an opportunity to analyze complex layups and geometry.

2.6 Finite Element Modeling

Matthews 21 illustrated that finite element analysis is applicable to composite materials, provided

the user adequately represents the properties and layup of the plates. MSC/Nastran 22 was chosen as the

finite element code because of the layered composite element capabilities. The example problem pro-

vided by Nettles 2° was analyzed using the finite element model. MSC/Nastran defined the required

material input and the equations from laminated plate theory were used to generate the input data

for the finite element model. Although the literature contains references to finite element modeling

of fiber-reinforced cementitious beams, there was no reference for a multilayered plate.

13



3. MATERIAL PROPERTIES TESTING

The process of preparing and testing the tensile and shear specimens is described in section 3,

along with details of mixing and placing the cementitious materials. The specimen geometry is briefly

discussed and presented. The process of producing a graphite-reinforced composite plate is then

described, followed by a unique method of machining the plates into tensile and shear specimens. The

use of several types of extensometers and strain gauges is demonstrated for the tensile test specimens.

A specialized Iosipescu strain gauge is described for the shear test. The tensile test procedure and the

results from six test specimens axe provided. The shear test procedure and the results for two shear test

specimens axe also included.

3.1 Mixing and Placing Cementitious Composites

Mixing and placing the cementitious matrix material is a very important aspect of specimen

development. The cementitious mix used in this investigation was developed for use in the American

Society of Civil Engineers' concrete canoe competition. The mix development is not a part of this

investigation. Table 3 defines the mix used in all specimens.

Table 3. Ingredients of the cementitious mixture.

Cementitious
Mixture Grams

K-25Microbubbles
Portlandcement
Latex

Fortifier

Denaturedwater

218
558

310
150

~620

The constituents of the mix were each weighed prior to the mixing process (fig. 8). The K-25

microbubbles were then added to the cement in small amounts and stirred by hand. Care was taken not

to break the microbubbles. The mixing process was judged complete by its color. The latex, fortifier,

and half of the water were then poured together repeatedly to ensure a thorough mixing of the liquid

ingredients--a very important step. It was found that the consistency of the cementitious matrix was

smooth and creamy when the latex and fortifier were mixed with water before they were added to the

dry ingredients. If the latex and fortifier axe added separately, the consistency of the mixture is lumpy
and coarse.
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Figure8. Toolsusedfor mixingandweighingingredients.

Theliquid ingredientsarethenmixedwith thecementandmicrobubbles.Theremainingdena-
turedwater(-_50percentof theoriginalweight)isaddeduntil themixturereachestheproperconsis-
tency.Thecementitiousmixtureshouldbesmoothandcreamywith theconsistencyof warmbutter
(fig. 9).A mixturewith toomuchwaterwill leakoutof themold,leavingvoidsin thespecimen.A
mixturethatis toodry will not"flow" aroundthegraphitemesh,weakeningthebondbetweenthe
matrixandthereinforcement.In addition,adrymixturewill tendto displacethegraphiteasthemixture
ispushedthroughthemesh.

Figure9. Cementitiousmixturewith properconsistency.
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Numerousattemptsweremadetoremoveair fromthefinalmix beforeit waspoured.Air in the
mixwasapparentbythehighporosityseenin someof thespecimensduringfinishingandsanding(fig.
10).Themix wasplacedin avacuumbottlewithasmallvacuumapplied(fig. 8).Thisprocessshouldbe
consideredmarginallysuccessful.Toomuchvacuumpressurecausedthemixto splatterandspill in the
vacuumbottle.Reducingthevacuumto levelsthateliminatedthesplatterhadlittle effectontheamount
of air in themix.Themix wasplacedonvibratingandshakingtables,causingair bubblesto riseto the
topof themix.However,it tendedto separatethemix (liquidscametothetop)suchthatsomeremixing
wasnecessarybeforeplacement.

Figure10. Specimenwithhighporosity.

Experienceindicatedthatthebestopportunityfor reducingthespecimenporositywasduring
theplacementprocess.Thecementitiousmix wasaddedtothemoldin smallamounts.Thethin layers
of cementitiousmix wereslowly"worked"into themoldsandgraphitemesh.Workingor floatingthe
cementitiousmix causedtheair bubblesto riseto thetop,andporositywaseventuallyreduced
to acceptablelevels.

3.2 Tensile and Shear Specimens

Tensile testing is used to determine the composite material properties El, E2, and V12. These

properties axe needed to complete the compliance matrix (sec. 5.3) for an orthotropic material:

S

1 -v12 0

E 1 E1

-v21 1
0

E 2 E 2

1
0 0

G12

(19)

The first step in the process is to determine the size and shape of a tensile test specimen for an

orthotropic composite material. The ASTM provides standards for tensile testing for a wide variety of

materials. A search of the ASTM database 12 provided a number of testing standards for materials similar

to the considered composite. The mutual goal of these test methods is to develop a test specimen that

provides tensile strain data, modulus of elasticity, and Poisson's ratio. ASTM Standard E8-99, "Standard

Test Methods for Tension Testing of Metallic Materials, ''12 establishes the dogbone configuration for the

tensile test specimen, as shown in figure 11.
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Figure 11. Dogbone configuration.

This test method employs small specimens that have a reduced cross section at the center of their

length to avoid failure in the grip area. The transition from the full width of specimen to a reduced

section at the center is gradual to minimize stress concentrations. ASTM Standard D 638-99, "Standard

Test Method for Tensile Properties of Plastics,"5 demonstrates the use of the dogbone specimen for

reinforced composites, including orthotropic laminates. A unique characteristic of this composite is the

relatively wide spacing of the graphite tows. The mesh contains eight yarns per inch in both axial and

transverse directions (8 in. by 8 in. weave). Reducing the width of the gauge section limits the number

of graphite yams in the tensile test. A decision to hold the gauge width to 1 in. made the specimen

geometry dimensions similar to the type III specimen of ASTM Standard D 638. In each specimen

geometry, the configuration is determined by the desire to produce failure in the gauge section without

inducing stress concentrations in the gauge section. The specimen length is substantially longer than the

width to minimize the bending stresses due to minor grip eccentricities. The final specimen configura-

tion is analogous to the specimens described in the ASTM standards, 5,12 with the exception that the

gauge width was 1 in.

The geometry of the shear specimen is established in ASTM D 5379-93, "Standard Test Method

for Shear Properties of Composite Materials by the V-Notched Beam Methods. ''15 This test is often

referred to as the Iosipescu shear test. Figure 12 illustrates the geometry of the shear test specimen.

T
0.75in.

,ll

Figure 12.

3 irl.

Shear test specimen.
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3.3 Tensile Specimen Production

Specimens were made in a plexiglass mold designed to place the graphite mesh at the center of

the laminated composite. As shown in figure 13, the graphite was placed in tension to prevent the weight

of the cementitious mixture from pushing the graphite toward the bottom of the mold.

Figure 13. Plexiglas mold with graphite tensioning device.

The cementitious mix was floated to the top level of the bottom spacer and a sheet of graphite

mesh was placed over the bottom spacer. The graphite tensioning device was then installed. The top

spacer was added and cementitious mix was floated to the top of the spacer. The tensioned graphite mesh

was trapped between two layers of the cementitious mix. The composite was allowed to cure at room

temperature for at least 21 days before the mold and tensioning device was removed. Even though mold

release agents were used, it was necessary to twist and flex the plexiglass to remove the specimens

without breaking them. After the specimens were removed from the molds, the graphite was trimmed.

The plexiglass side of the specimen had a smooth finish, while the top of each specimen had a coarser

texture. A bandsaw was then used to cut the "cookie-sheet" specimen into 2-in. by 14-in. strips for

machining.
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An undesirableaspectof thedogbonegeometryis thatit requiresmachiningof thecomposite
laminate.Laminatedcompositescanbedifficult to machine;2delaminations,notches,anduneven
surfacescanresultfrom inappropriatemachiningmethods.In aneffortto fix edgesdamagedbya
milling machine,it wasfoundthatabandsawcouldbeusedto cutthecementitiousandgraphitecom-
posite.Thecutsweresmoothandnotchfree.A dogbonespecimenwasthencutoutusingthebandsaw.
Takingthemachiningprocessfurther,it wasfoundthatarouterwouldcutasmoothradiusonthe
specimen(fig. 14).

Figure14. Routerusedto machinedogbonespecimens.
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Therouterleft theedgessmoothandnotchfree.Onfurtherinvestigation,it waslearnedthat
atemplate,shownin figure 15,usedwithatable-mountedrouter,providedanexcellentmethod
of machiningthedogbonespecimens.A specimenconfiguredwith this templateis shownin figure16.
Thespecimenhasa5-in.gaugelength,a 1-in.gaugesectionwidth,anda14-in.length.

Figure15. Templateusedfor machiningspecimens.
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Figure 16. Machined dogbone specimen.
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As previouslymentioned,thetopsideof thespecimenhadacoarsetexture.Thetexturedsurface
madeit difficult to attachinstrumentation.A flat backingplateequippedwith finegrit sandpaper,shown
in figure17,wasusedto finishthetopsurfaceof thespecimen.Thisprocesswasalsousedto ensurethat
thegraphitemeshwasin thegeometriccenterof thespecimen.Occasionally,finishingthetopsurfaceof
thespecimenresultedin thetoplayerbeingthinnerthanthebottom.In suchacase,thebottomlayerwas
sandedto thesamethicknessasthetop.Usingshimmingmaterialasaguideensuredthatthetopand
bottomlayerswerethesamethickness(fig. 18).

Figure17. Flatplateusedto polishsurface.

Figure18. Edgeviewof finishedspecimen.
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3.4 Shear Specimen Production

The geometry of the shear specimen was difficult to machine because of the small radius at the

base of the notch. Designing a router blade with a cutting diameter of 0.05 in. solved the problem. A

router template was then machined to the dimensions specified in the ASTM standard 15 (fig. 19). Shear

test specimens could then be machined using a router and table (fig. 20) in the same manner as the

tension test specimens.

Figure 19. Shear specimen router template.

Figure 20. Shear specimen router table.
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Theroutermachinestheshearspecimen,leavingtheedgessmoothandthedimensionswithin
specification(fig. 21).Thetopsurfaceof thespecimenrequiressandingfor asmoothfinishandallows
adjustmentof thethicknessif required.

Figure21. Sheartestspecimen.

3.5 Tensile Specimen Instrumentation

The instrumentation for the tensile test specimen must simultaneously measure the longitudinal

and transverse strain. The ASTM standards recommend using extensometers, 5 noting that strain gauges

provide a viable alternative. However, proper techniques for mounting strain gauges axe crucial to

obtaining accurate data. 13

Instrumentation of the specimens became a significant challenge to successful testing. Three

types of extensometers were available during testing. The 2-in. gauge length was used for axial strain

measurement (fig. 22).

Figure 22. Extensometer with a 2-in. gauge length.
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The extensometer was attached to the edge of the test specimen. The data were compared to the

axial strain gauge data. Plots of the strain gauge and extensometer data for the axial direction were in

good agreement (fig. 23), indicating that the strain gauge application methods were acceptable. The 1-in.

gauge length was intended for transverse strain measurement (fig. 24). This extensometer was attached

to the face of the test specimen. However, the thin specimen did not have adequate stiffness to support

the weight of the extensometer. The instrument appeared to deflect the specimen, causing the knife

edges of the extensometer to lose contact with the specimen surface. As a result, the data from the

transverse extensometer did not correspond to the data from the transverse strain gauge (fig. 25).
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Figure 24. Extensometer with a 1-in. gauge length.

Figure 25. Extensometer mounted on test specimen.

The biaxial extensometer, as shown in figure 26, was also considered. However, the instrument

weight deformed the specimen unacceptably. Efforts were made to support the weight of the instrument.

Unfortunately, the instrument relies on its weight to maintain contact between the knife edges and the

specimen. It was too difficult to reduce the deformation in the specimen and maintain adequate weight

on the knife edges of the instrument. The biaxial extensometer was abandoned in place of the previously

mentioned extensometers and strain gauges. Strain gauges were attached to both sides of the specimen

(fig. 27). The strain gauges were 90 ° Tee rosettes, model CEA-06-125UT-120, manufactured by Micro-

Measurements. The gauges were oriented in the axial and transverse directions.
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Figure26. Biaxialextensometer.

Figure27. Specimenwithstraingaugeinstalled.

All thestrainmeasurementsweremadeatroomtemperature(-_75°F).Thestraingauge
installationwascompletedbythestraingaugemanufacturer'srecommendation(fig. 28).13

Figure28. Straingaugeinstallation.
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Thespecimenwassmoothedusingfine-gritsandpaperandwasfreefromirregularitiesand
contaminates.An acidiccleaner,PrepConditionerA, wasappliedto thegaugeregion.M-PrepNeutral-
izer5A followedtheacidcleaner.Micro-MeasurementsM-Bond 200andacatalystwereusedto bond
thegaugesto thespecimen.Thefourstraingaugesprovidedaxialandtransversestraindatafor each
sideof thespecimen.Thisallowedthedatato becorrectedfor anybending.

Thestraingaugeinstallationmethodworkedwell providingnoporosityor surface"grit" was
present.As mentionedearlier,theorderinwhichtheingredientsaxemixedandthemannerin which
themoldsaxepouredsignificantlyaffectedspecimenporosityandtexture.Specimenswithhighporosity
oratexturethatcouldnotbesandedsmoothwerediscarded.

3.6 ShearSpecimenInstrumentation

ASTM D 537993 defines the instrumentation for the shear test article. 15 This standard specifies

a strain gauge rosette with two 45 ° strain gauges be placed in the center of the specimen. The gauges

are oriented at +45 ° to the loading axis (fig. 29).

Figure 29. Strain gauge location for shear specimen.

The recommended strain gauge configuration requires the use of correction factors to account for

the gradient of strain between the notches. Ifju 18 developed a special strain gauge that overcomes many

of the problems associated with the ASTM recommended strain gauges. Micro-Measurements offers this

strain gauge configuration as N2A-08-C032A. 18 It is a two-gauge rosette with the gauges at 45 ° and

-45 ° and records the average strain between the notches. These strain gauges were recommended in the

Micro-Measurements catalog as being specifically made for Iosipescu shear testing (fig. 30). 23 The

strain gauge outputs the shear strain directly, avoiding the need for correction factors. The strain gauge

installation was the same as used for the tensile test specimens.
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Figure30. Shearspecimenwith straingauges.

Thegaugesaremountedoneachsideof thetestspecimen18in orderto removetheeffects
of twistingfromthespecimen.Thestraingaugeswereconnectedintoafull-bridgecircuitasrecom-
mended.18,23Thisconfigurationof fourstraingauges,twooneachsideof thespecimen,resultsin a
strainreadingthatis twicethedesiredreading.A metallic"pathfinder"specimenwasusedto verify the
Iosipescutestfixtureandinstrumentation(fig. 31).Thepathfinderspecimenhadaknownshearmodulus
valueof 10.8× 106lbf/in.2Thepercentageof erroris shownin thefollowingcalculation:

Error%- 10.8- 10.93 (20)×100%= -1.2% .
10.8

Thetestdatacomparedverywell to theactualvaluefor theshearmodulus.
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Figure 31. Iosipescu pathfinder specimen.
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3.7 Tensile Test Procedure

The tensile test was run using an MTS 20-kip test machine with a numerical control system

(fig. 32). The strain gauge and extensometer data were recorded with a digital data acquisition system.

The load was applied at a rate of 0.05 in. per minute and data were recorded every 0.5 sec. Load was

applied until an auditable "snap" marked the initial failure point of the cementitious material; strain data

beyond that point were unreliable.

Figure 32. Tensile test machine.

As discussed in section 3.5, extensometers and strain gauges were initially used for strain mea-

surement. The axial extensometer and the strain gauge data were in fairly good agreement (fig. 23).

However, the extensometers could not be attached to both sides of the test specimens. In addition, the

knife edges of the transverse extensometers slipped and lost contact with the specimen easily. Therefore,

the extensometers were replaced with strain gauges.

Each tensile test specimen had four strain gauges, one axial and one transverse gauge on each

side. The strain gauges were located back to back on each specimen; this allowed the strain data to be

corrected for any bending caused by misalignment of the test articles. The data were corrected for

bending by taking the average of the two strain gauges (fig. 33).

The strain gauges in the axial direction provided consistent and reliable data throughout the test

program. However, the strain gauges in the transverse direction proved to be less trustworthy. The data

illustrated in figure 34 axe typical of the transverse data recorded for most of the tensile specimens. The

strain data appear to be constant for a number of loads; then the strain suddenly increases. This pattern

repeats itself, forming a curve that resembles a step function. A linear best-fit line through the data will

be used to approximate the curve.
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3.8 Axial Properties From Tensile Test Data

Numerous tensile test specimens were produced and tested while developing the testing proce-

dures described in this TM. While this trial-and-error procedure was time consuming and labor intensive,

it eventually produced an acceptable test specimen and procedure. A final set of tensile test specimens

was produced using the lessons leaxned from previous experience.

The test specimens were each tested using the same procedure. Data from four strain gauges and

the machine load were recorded. The data acquisition system stored the load and strain data in a spread-

sheet for analysis and plotting. The stress values axe calculated from the area of the test specimen and

applied load:

Load lbf

o-= (Width)(Thickness) in. 2 (21)

As previously discussed, the strain values axe the average from the back-to-back gauges:

°side 1 _ °side 2_
%xial -%xial ] (22)

Eaxial = 2

The data were then plotted to produce a stress-strain curve (fig. 35) for each specimen.
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Figure 35. Typical stress-strain curve for each specimen.
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Young'smodulusis definedastheslopeof thelinearportionof thestress-straincurve.6The
valuecanbedeterminedby placingabest-fitlinethroughthedatapoints.Theslopeof theline is then
takenasYoung'smodulusfor thespecimen(fig. 36).Thisprocedurewasrepeatedfor six testspecimens.
A summaryof tensiletestdataindicatesconsistentresults(fig. 37).AppendixB containsthecomplete
setof dataplotsfor thetensiletestspecimens.
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Figure 36. Calculation of Young's modulus for each specimen.
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Figure 37. Summary of tensile test specimens.
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Young'smodulusvaluesfromthesixtensiletestspecimensaxesummarizedin table4.The
"pathfinder"specimenCG-SG4wasmadethinnerthantheotherspecimens.Severalof thethinner
specimensweredamagedduringthesandingprocess,soathickermoldandspecimenwerelaterpro-
duced.Theremainingfivespecimensweremadefromthethickermoldandaxerepresentedin figure37.
TheaverageYoung'smodulusvaluefor thefive specimensis 4.04× 105lbf/in.2,with astandard
deviationof 0.20× 105lbf/in.2

Table4. Young'smodulusfromtensiletest.

Width Thickness

Specimen (in.) (in.)

CG-SG4 1.004 0.120

Dec_28-4 1.016 0.190

Dec_28-5 1.006 0.196

Dec_28-6 1.000 0.216

Dec_28-7 1.003 0.210

Dec_28-8 1.000 0.180

Young'sModulus
TestResults

(Ibf/in.2)

5.00 x 105

3.88 x 105

3.91 x 105

4.07 x 105

3.98 x 105

4.40 x 105

3.9 Poisson's Ratio From Transverse Test Data

The transverse strain values can be used to determine the Poisson's ratio for the composite

material. By definition, Poisson's ratio is given by the equation v12 = - e2/e 1, assuming a uniaxial

stress. 6 The transverse strain data from each of the five test specimens is presented in detail in

appendix B. As mentioned in section 3.7, the transverse strain data presented here axe the average

of two back-to-back strain gauges (fig. 38). In addition, a best-fit line is drawn through the data points.

The data were fairly consistent from one test article to another (fig. 39); the same "step function" pattern

was present in all the test articles (sec. 3.7).
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Figure 38. Typical transverse strain curve.
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The Poisson's ratio calculations were made from the following straight-line approximation:

and

Solving the equations for the strain,

dr = 0.388eaxia 1 + 15.812

dr = -2.9036etran s - 2.5466.

(23)

(24)

and

(dr -15.812)
eaxial - 0.388

(dr + 2.5466)

etrans - -2.9036

Substituting into the equation for Poisson's ratio,

(25)

(26)

then

V = - Etrans ,
Eaxial

(27)
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(_ + 2.5466)]
-2.9036 J

v= [(a-15.812)]
L J

Poisson's ratio can now be calculated for each of the five test specimens (table 5).

Table 5. Poisson's ratio.

Specimen Experimental

Dec_28-4
Dec_28-5

Dec_28-6

Dec_28-7
Dec_28-8

0.136

0.135
0.142

0.131
0.144

(28)

The average Poisson's ratio is 0.137 with a standard deviation of 0.00532. The small standard

deviation provides confidence that the data axe reasonable.

3.10 Shear Test Procedure

ASTM standard D 5379-9315,16 documents the standard shear test for determining the shear

properties of composite materials. This test uses a specimen referred to as the V-notched beam (fig. 40).

This test is often referred to as the Iosipescu shear test, in honor of its developer. The test specimen is

placed in a massive test fixture referred to as an Iosipescu shear test fixture (fig. 41). The test fixture is
described in detail in the ASTM standards.

T
0.75in.

91

Figure 40.

3 in.

V-notched shear specimen.
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Figure41. Iosipescusheartestfixture.

Thespecimenis insertedinto thefixturewith thenotchesalignedwith thecenterof thetest
fixture.Thetwohalvesof thetestfixturearecompressedbytheMTStestingmachinewhilemonitoring
load.Therelativedisplacementbetweenthetwohalvesof thefixtureloadsthenotchedspecimen.Strain
gaugesareplacedin thecenterof thespecimento measuretheshearstrainresponseduringloading.18,23

3.11 Shear Properties From Iosipescu Shear Testing

The cost and availability of the strain gauges used on the test specimens limited the number

of Iosipescu shear tests. As a result, only six instrumented test specimens were available. The first test

specimen was a metallic pathfinder specimen that was used to verify that the test procedure, instrumen-

tation, and fixture could be used to determine the shear modulus for a well-characterized material

(sec. 3.5). The results from the pathfinder specimen were in excellent agreement with the known values

for the material. However, of the remaining five composite specimens, only two specimens were suc-

cessfully tested. The data from the first composite specimen were not usable due to a problem with the

data acquisition system. The increment for the load data was not properly set during the test. The strain

gauges on the third and fifth test articles failed to provide usable data during the test. The gauges appar-

ently debonded from the test specimens. The debonds were most likely caused by poor surface prepara-

tion during the strain gauge installation. It should be emphasized that the Iosipescu shear fixture and test

specimens performed well during testing. The results from the two successful tests confirm this observa-

tion (fig. 42). The strain gauge on specimen 4 failed at -_3,000/,/; however, the test article continued to

take load. The strain gauge on specimen 2 continued to provide strain data until the article failed.
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Figure 42. Iosipescu shear test results.

The shear modulus is defined as the slope of the linear portion of the shear stress-shear strain

curve. 6,15 The value can be determined by placing a best-fit line through the datapoints. The slope of the

line is then taken as the shear modulus for the specimen (fig. 43). This procedure was repeated for two

test specimens. A summary of shear test data indicates consistent results (table 6). Appendix B contains

the complete set of data plots for the shear test specimens.
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Table 6. Shear modulus summary.

Width Thickness

Specimen (in.) (in.)

Shear2 0.458 0.180

Shear4 0.457 0.186

Average - -

Shear Modulus

(Ibf/in.2)

7.2×10 4

7.8×10 4

7.5×10 4

A best-fit line is drawn through the datapoints to provide a means of accurately calculating the

shear modulus (fig. 43). The shear modulus is given by the slope of the straight line: 19

(305 ilnbf2- 89 lbrm@.f2)
= . 104 lbf

Garticle 2 (4,000/.t - 1,000/.t) = 7.2 × in.2
(29)

(209 lb--4f2 91 lbf
in. - i_-'2)=7.8×104 lbf

Garticle4 = (2, 500/./- 1,000/.t) in.2

(30)

As shown in table 6, the average shear modulus is 7.5 × 104 lbf/in. 2, with a standard deviation

of 0.42 × 104 lbf/in. 2 The percentage of possible error is determined by the following:

lbf lbf 104 lbf
7.5 × 104 _.2 + 0.42 × 104 in.----T= 7.92 × in.2

(31)

and

7.92 × 104 lbf _ 7.5 × 104 lbf

Error% - in'2 in.2 _ 5.6% . (32)

7.5 × 104 lbf
in.2

3.12 Summary of Composite Material Properties

The material properties for this graphite-reinforced cementitious composite material were

successfully determined from standard test methods. It was found that the constituent materials can be

mixed and placed to form laminated composite plates. The plates were cured at room temperature and

without a vacuum bag. The composite material can be machined into various shapes using standard

machining tools such as a router. Strain gauges can be applied to the surface of the composite using

M Bond 200 and following the standard methods of installation. The results of the material testing

were consistent and repeatable for both tensile and shear testing.

The materials property data can now be used as a basis for comparison to theoretically derived

values. In addition, these values will be used to develop the analytical tools needed to predict the

response of multilayered beams made from graphite-reinforced cementitious materials.
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4. RULE OF MIXTURES FOR A COMPOSITE MATERIAL

The rule of mixtures is investigated as a method to predict the material properties of graphite-

reinforced cementitious composites. The equations for the effective material properties axe derived using

the assumptions associated with the rule of mixtures. These material properties are then compared to the

results of the material properties testing. Several derivations axe then made to illustrate that these mate-

rial properties can be used with the elastic curve equations to determine the deflection of simple beams.

Deflection results from a finite element model and a static test axe compared to the analysis using the

elastic curve equations. The results illustrate the deflections can be predicted by using the material

property data from the rule of mixtures method. However, several deficiencies and limitations are

encountered. The conclusion is made that the rule of mixtures can provide a reasonable value for

Young's modulus in the axial direction. However, the theory cannot provide accurate values for

Poisson's ratio, the shear modulus, or Young's modulus transverse to the direction of the fibers and load.

4.1 Material Properties in the Axial Direction

The rule of mixtures is a method for determining the effective properties of a composite material

based on the contributions of the individual constituents. 1° The properties of the composite axe related to

the quantity of the fibers in the matrix. The fiber volume fraction (Vfiber) and the matrix volume fraction

(Vmatrix) axe used to measure the amount of fiber or matrix in a given volume of material. E in the direc-

tion of the fiber, El, can be determined by assuming the strains in the fiber direction are the same in the

fibers as in the matrix; i.e., Efiber -- Ematrix" Since the strain in the fiber is the same as the strain in the

matrix, the sections normal to the fiber direction remain plane after stressing (fig. 44).
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Figure 44. Loading in axial direction.
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Thestrainin direction1,thefiberdirection,is givenbythedeflectiondividedbytheoriginal
length,e 1 = AL/L. Applying Hooke's law and assuming both the fiber and the matrix axe linear, then

CYfiber = Efibere 1 and CYmatrix= Ematrixe 1. This relationship can be compared to two springs acting in

parallel (fig. 45). The total load (P) is carried by the load in the fiber (Pfiber) and the load in the matrix

(Pmatrix)"

P

5

Figure 45. Spring in parallel.

The applied force (P), P = Pfiber + Pmatrix, acts on the total cross-sectional area (A). The fiber

stress (O'fiber) acts on the cross-sectional area of the fiber (Afiber). The matrix stress (O'matrix) acts

on the matrix area (Amatrix). The force equation can then be written in terms of the stress and area,

oIA 1= O'fiberAfiber + O'matrixAmatrix. Now by substituting the Hooke's law equations for the stress terms,

the force equation may be written in terms of strain and Young's modulus as E 1_1A1 = Efiber8lAfiber

+ Ematrix8lAmatrix. Simplifying the equation results in an expression for Young's modulus in terms
of the ratio of the areas:

EfiberAfiber EmatrixAmatrix (33)
E 1 - +

A 1 A 1

Vfibe r and Vmatrix can be defined as Vfibe r = Afiber/A 1 and Vmatrix = Amatrix/A 1.

By definition, the volume fractions must satisfy the equation Vfibe r + Vmatrix = 1. Thus,

the expression for the effective Young's modulus in direction 1 can be written in terms of the volume

fractions:

E 1 = VfiberEfiber + VmatrixEmatrix • (34)

4.2 Material Properties in the Transverse Direction

The effective property in the matrix direction, perpendicular to the fiber direction, can be

determined by assuming equivalent stress in the fiber and the matrix (fig. 46).
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In the transverse direction, the cross-sectional areas axe equal and the load is constant across the

area; therefore, o is equal for the fiber and the matrix. Then the strains in the fiber and matrix can be

written in terms of the stress, 8fibe r -- @F_fibe r and 8matrix -- G2/Smatrix. The fiber and matrix transverse

strains are not assumed to be equal. Now consider figure 46. The total transverse deflection (Aw) is the

sum of the fiber deflection (AWfiber) and matrix deflection (Awmatrix): Aw = AWfiber + Awmatrix. Defining

the strains in terms of the fiber deflection, 8fibe r -- AWfiber/gfiber and the deflection of the matrix, 8matrix

= Awmatrix/Lmatrix. The transverse dimension over which the fiber and matrix strains act can be written in

terms of gfiber: Lfibe r = gfiberW and gmatrix -- gmatrixW. The deflection equation can now be defined in

terms of strain: e2w = 8fibe r (VfiberW) +Ematrix(VmatrixW ). Now the w factor vanishes from both sides

of the equation. Hooke's law equations can be substituted for the strains, 02/E 2 = Vfibe r (Y2/Efiber

+ Vmatrix (Y2/Ematrix. The stress term now vanishes from both sides, 1/E 2 = Vfiber/Efiber + Vmatrix/Ematrix.

Solving the above equation for the E 2 term gives an equation for the Young's modulus in the transverse
direction as

EfiberEmatrix

E 2 = VmatrixEfiber + VfiberEmatrix
(35)

4.3 Determination of Poisson's Ratio

Poisson's ratio (v) is defined as the ratio of the transverse strain over the strain in the fiber direc-

tion when stress in the fiber direction is present and all other stress is zero, v12 = -e2/e 1. In such a case,

the following definitions can be made: Vmatrix = 8matrix/81 and Vfiber = 8fiber/81. Recalling that the deflec-

tion equation was previously defined as e2w = 8fiber(VfiberW ) + Ematrix(VmatrixW), the latter can be divided

by e I and simplified to the equation e2/e I = efiber/el(Vfiber) + ematrix/el(Vmatrix ). Substituting the

Poisson's ratio (v12) as defined above in the equations results in the following expression:

v12 = VfiberVfibe r + VmatrixVmatrix (36)
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4.4 Determination of the Shear Modulus

To determine the shear modulus (G12), one assumes that shear stress (v) on the fiber

and the matrix are equal. As illustrated in figure 47, the shear for the composite plate is defined

as Y12 = 72/G12.

w

Matrix

,- Fiber

Direction2

Matrix
Direction 1

q

Iq L D, I

Figure 47. Shear loading.

This assumption means that the shear deformation for the matrix and the fiber can be written as

Ymatrix = _'/Gmatrix and _iber = _'/Gfiber" As shown in figure 48, the shear deflection (A) is a function of the

shear strain and the width (w): A= 7w. In addition, Ais the sum of the fiber deflection plus the matrix

deflection: A = Afiber + Amatrix.

w

I,q L

Figure 48. Shear deformations.
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As previously shown, the deflection for the matrix and fiber can be stated in terms of the volume

fractions, Vfibe r and Vmatrix: Amatrix = _'matrix(VmatrixW) and Afibe r = _'fiber(VfiberW). Substituting into

the deflection equations and allowing the w factor to vanish results in the equation for shear strain:

_'= _'matrixVmatrix + _'fiberVfiber . Finally, one can substitute the Hooke's law equations for shear strain

to obtain _c/G12= Vmatrix_C/Gmatrix +Vfiber_C/Gfiber . This equation can be simplified by allowing the shear

stress term to vanish and solving for G12:

GmatrixGfiber

G12 = VmatrixGfiber + VfiberGmatrix
(37)

4.5 Calculation of the Effective Material Properties

Equations (34)-(37) can now be used to calculate the effective material properties of a graphite-

reinforced cementitious composite. The material properties for the matrix were obtained from the

manufacturer of the graphite mesh. The properties for the matrix were obtained from previous research 1

and confirmed with tensile tests (app. B). The material properties for the fiber and the matrix axe defined
as follows:

Efiber = 33.5 × 106 lbf/in. 2

Ematrix = 115.1 × 103 lbf/in. 2

Vfiber = 0.3

Vmatrix = 0.27

/)fiber = 0.064 lbf/in. 3

/3matrix = 0.35 lbf/in. 3

Gfiber = Efiber/2(1 + Vfibe r)

Gmatrix = Ematrix/2(1 + Vmatrix).

The fiber area in the composite must be determined from the properties of the graphite.

Data provided with the graphite define the area in one graphite yam (Ayarn). The number of yams

(Nyarn) is determined for the test specimen and the total area of the graphite (Afiber) is determined:

Ayar n = 0.000175 in.2, Nyar n = 8, and Afiber = NyarnAyarn .

The total area of the specimen (nl) is determined from the thickness and width of the specimen.

For the example presented here, the test article is labeled CG-SG4, and t = 0.12 in., w = 1.004 in., and

AI= 0.012 in. 2 The fiber and matrix volumes, respectively, can be calculated as follows: Vfibe r = Afiber/A 1

and Vfiber = 0.012; Vmatrix = 1 - Vfiber and Vmatrix = 0.988.

Thus, the values for the effective material properties can be calculated as follows:
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• Young'smodulus(direction1):

E 1 = VfiberEfiber + VmatrixEmatrix

• Young's modulus (direction 2):

E 1 = 5.045 × 105 lbf/in. 2

EfiberEmatrix

E 2 = VmatrixEfiber + VfiberEmatrix

(38)

• Poisson's ratio:

E 2 = 1.164 × 105 lbf/in. 2

v12 = VfiberVfiber + VmatrixVmatrix

(39)

V12 = 0.27 (40)

• Shear modulus:

GfiberGmatrix

G12 = VmatrixGfiber + VfiberGmatrix

G12 = 4.62 × 104 lbf/in. 2 (41)

4.6 Comparison of Rule of Mixtures Properties to Test Data

Prior to each tensile test, the width and thickness of each specimen was recorded. Specimen

CG-SG_4 was the pathfinder specimen and was made thinner than the other specimens. The hand-

polishing of the specimen surface resulted in a variation in specimen thickness for the remaining five

specimens (table 7). These dimensions were used with the Mathcad® solution sheet for the rule of

mixtures to predict the Young's modulus in the axial direction. The results of the analysis are presented

in table 7. The results from the rule of mixtures can be compared to the results from tensile testing.

Figure 49 is a stress-strain curve for specimen CG-SG_4.
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Table 7. Young's modulus predicted from the rule of mixtures.

Width Thickness

Specimen (in.) (in.)

CG-SG4 1.004 0.120

Dec_28-4 1.016 0.190

Dec_28-5 1.006 0.196

Dec_28-6 1.000 0.216

Dec_28-7 1.003 0.210

Dec_28-8 1.000 0.180

Young'sModulus
Rule ofMixtures

(Ibf/in.2)

5.05 x 105

3.58 x 105

3.52 x 105

3.31 x 105

3.37 x 105

3.75 x 105

1,800
y= 0.4731x+ 28.708

1,600

1,400

1,200

1,000

8OO

600

400

1,000 1,500 2,000 2,500 3,000 3,500

Microstrain

Figure 49. Composite stress-strain curve (SG_4).

The testing of this type of specimen is discussed in detail in section 3. The data axe presented

here to provide a comparison between the material properties calculated from the rule of mixtures and

the test data. Young's modulus from the tensile test is calculated by taking the slope of the stress-strain

curve:
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lbf
(1,500- 500)in.2 lbf

Etest = (3, 000 - k 000) × 10 .6 Etest = 5 × 105 in.2

Aerro r = Etest - E1 × 100%
Etest

Aerro r = 0.898% .
(42)

The analysis is repeated for each of the tensile test specimens. Comparing the Young's modulus

data to predicted values provides insight into the accuracy of the rule of mixtures method (table 8).

Table 8. Comparison of predicted Young's modulus with test results.

Specimen

CG-SG4

Dec_28-4

Dec_28-5

Dec_28-6

Dec_28-7

Dec_28-8

Young'sModulus
Ruleof Mixtures

(Ibf/in.2)

5.05 x 105

3.58 x 105

3.52 x 105

3.31 x 105

3.37 x 105

3.75 x 105

Young'sModulus
TestResults

(Ibf/in.2)

5.00x 105

3.88 x 105

3.91 x 105

4.07 x 105

3.98 x 105

4.40 x 105

Measurementof Error

(%)

0.89

7.70

10.00

18.60

15.30

14.80

The errors range from 0.89 to 18.6 percent; averaging the six test specimens yields an average

error of 11.23 percent with a standard deviation of 6.4 percent. In each case, the rule of mixtures under-

estimates the test value, suggesting that the predictions may be modified 9,1° to more closely match the

test values. Empirical modifications to the rule of mixtures would require a considerable test program to

generate a large enough database from which to derive an accurate factor. It is sufficient for this TM to

recognize that the rule of mixtures provides a reasonable estimate of the composite material properties.

The comparison establishes the fact that the rule of mixtures is applicable to a cementitious-based

composite and suggests that employing empirical modifications can increase the accuracy.

Young's modulus in direction 2 was not accurately determined from the rule of mixtures. This

composite is made from a graphite mesh, which results in fibers running in both directions 1 and 2.

Since the composite has the same material composition in both directions, it is intuitively obvious that

the Young's modulus in directions 1 and 2 would be equal. The rule of mixtures calculates the E 2 value

well below test results. This is not unexpected, since this theory considers only fibers in direction 1.2,1°

However, the equations developed by Krenchel 3 can be used to transform the fiber direction and load to

accurately predict E 2. Krenchel's transformation equations depend on the orientation of the fibers to the

load. These equations axe based on the same principles as presented in section 4.2. However, the proper-

ties in direction 2 can be calculated by mathematically rotating the load 90 ° (app. A). Regardless of the

apparent inadequate results in direction 2, the rule of mixtures can still provide the necessary data for the

analysis of simple beams.
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4.7 Comparison of Poisson's Ratio From Tensile Test Data

Poisson's ratio from the transverse data is presented in section 3.8. Poisson's ratio for the five test

specimens presented in table 4 is calculated using the rule of mixtures equation (40), v12 = VfiberVfiber

+ VmatrixVmatrix. The results of the calculations are presented in table 9.

Table 9. Comparison of predicted Poisson's with test results.

Error

Specimen Experimental Rule ofMixtures (%)

Dec_28-4

Dec_28-5

Dec_28-6

Dec_28-7

Dec_28-8

0.136

0.135

0.142

0.131

0.144

0.262

0.262

0.262

0.262

0.262

48.0

48.5

45.8

50.0

45.0

The error in the Poisson's ratio calculation is substantial. However, it is not entirely unexpected

(sec. 3.5). 2,]o The derivation for the rule of mixtures assumes the reinforcement fibers axe present in the

axial direction only. The theory cannot account for fibers running in the transverse direction, emphasiz-

ing the need to develop a solution based on the laminated plate theory for composites.

4.8 Comparison of Shear Modulus Values

The shear modulus (sec. 4.4) of the matrix and the fiber can be obtained knowing the Young's

modulus and Poisson's ratio as follows: 6

Ematrix

Gmatrix = 2(1 + Vmatrix ) =

4.5 × 104 lbf
in.2

Efiber = 12.8 × 106 lbf (43)
afiber - 2 (1 + Vfibe r) in. 2

The shear modulus of the composite is determined from the shear moduli of the constituents

and the volume fractions of the composite. Applying equation (41),

GmatrixGfiber

G12 - VmatrixGfiber + VfiberGmatrix
- 4.6 × 104 lbf (44)

in.4

It is apparent from the G12 value that the graphite fiber does not significantly increase the shear modulus

of this composite. However, the results of the shear testing do not support this observation (fig. 40).
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Comparing the predicted value and the value from the test article (table 10),

(4.6 x 10 4 - 7.2 x 10 4)
Error%

7.2 × 104
x100% = 36.1% . (45)

Table 10. Comparison of predicted shear modulus with test results.

ShearModulus
RuleofMixtures

(Ibf/in.2)

ShearModulus
TestResults

(Ibf/in.2)
MeasurementofError

Specimen (%)

Shear2 4.6× 104 7.2× 104 -36.1

Shear4 4.6x 104 7.8x 104 -41.0

The average percent of error, 38.6 percent, indicates that the rule of mixtures significantly

underpredicts the shear modulus for this composite. The test results indicated the shear modulus is

greater for the composite than for the cementitious material.

4.9 Summary of Material Properties

In the axial direction, Young's modulus can be determined from the rule of mixtures. The rule

of mixtures prediction is on average 11 percent less than the value obtained from tensile test data. As

expected, the rule of mixtures did not predict the Young's modulus in the transverse direction. For the

composite considered here, Eaxia 1 = Etransverse. In addition, the rule of mixtures did not predict the

Poisson's ratio for the composite material. The material property testing indicated a Poisson's ratio value

=50 percent less than the value predicted by the rule of mixtures. The results of the shear test determined

a shear modulus that is on average 39 percent higher than the value predicted by the rule of mixtures.

Although only two shear test specimens were available, the good correlation in the two test specimens

gives credibility to the test data.

The limitations of the rule of mixtures axe obvious from the review of these results. This observa-

tion leads to the conclusion that additional analytical methods must be investigated to determine all the

material properties for the composite. However, before pursing these additional analytical methods, it

should be recognized that many analytical problems could be solved using the information provided by
the rule of mixtures.

4.10 Calculation of the Deflection for a Beam in Pure Bending

The rule of mixtures method for calculating the effective material properties for a composite

beam has been compared to material test data. The results indicated that the rule of mixtures could be

used to predict the Young's modulus in the direction of the fiber and load, E 1 or Eeffectiv e. The next

logical step is to combine this material property with an analytical method that can be used to predict the

behavior of a composite structure. As noted earlier, the transform section method was not accurate for
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thiscompositebecausetheYoung'smodulusratiowasextremelyhigh.However,usingtheeffective
materialspropertydata,theYoung'smodulusratio (77= Eeffective/Ematrix ) is now <20 and in the accept-

able range. The Biszick beam 1 can now be analyzed by using the effective material property data and the

transform section theory. The results will be compared to static test results to give an indication of the

accuracy of the methods employed.

The cross section of a composite beam fabricated of the same graphite and matrix materials used

throughout this research, is illustrated in figure 50. An assumption is made that the beam is composed of

two materials; the "graphite section" is composed of graphite and matrix material. The hg dimension of
this section is the same thickness as the tensile test articles used to verify the effective material proper-

ties for the composite material. The transform section analysis method will assume the graphite-

reinforced section has the effective material properties calculated by the role of mixture method. The

geometry of the test specimen is used to determine the dimensions of the graphite strands and the thick-

ness of the graphite section:

wg = 1.20 in.

hg = 0.115 in.

hT
he

l

.;5.:.i.2_.:.;).;.;".:.i.2_.:.;).;.;".:.GraphiteSection

MatrixSection

Figure 50. Cross section of beam.

The remaining dimensions of the composite section axe calculated as follows:

h c = 0.361 in. - hg

w c = 1.20 in.

h c = 2.46 x 10 1 in.

This test specimen has nine yams across the width. The fiber volume can be determined

from the geometry of the test specimen:

Ayar n = 0.000175 in.2

Nyar n = 9

Afiber = NyarnAyarn
A 1 = (0.115 in.) (1.20in.)

Vfiber = Afiber/A 1

Vfibe r = 1.141 × 10 4.
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Thematrixvolumeis thencalculatedfromtheruleof mixtures:

Vmatrix = 1 - Vfibe r

Vmatrix = 9.886 × 10 1.

The material properties of the graphite and matrix are the same as previously defined:

Efibe r = 33.5 × 106 lbf/in. 2

Ematrix = 115 × 103 lbf/in. 2

The effective material properties for the composite section of the beam can be calculated.

• Young's modulus in direction 1:

E 1 = VfiberEfiber + VmatrixEmatrix
lbf (46)

E 1 = 4.9602 x 105 in.2

The moment of inertia for the beam can now be calculated using the transform section method.

The Young's modulus ratio for the transform section is calculated from the effective material properties

and the matrix material properties:

E1 (47)7/- 7/= 4.313 .
Ematrix

The beam geometry is transformed by multiplying the width of the graphite section by 7/:

wg = rlwg wg = 5.176 in.

The centroid and the area of the graphite section axe given by

(48)

while the centroid and the area of the matrix material is

Ag = hgwg ,
(49)

hc (50)
Yc = -_- Ac = hcwc •
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Thecentroidof thetransformsectionisgivenby

Ybar

Agyg + AcY c
Ybar = 2.4366 × 10-1in. (51)

Ag + A c

The cross section of the composite is symmetric in the X direction; thus, the X location
of the centroid is the center of the beam:

_ wc (52)
Xbar - T Xba r = 0.6 in.

The moment of inertia for the graphite-reinforced section of the beam can be calculated by using

the parallel axis theorem, I = Ig + Agd 2. The base of the top section is transformed by 77and the height of

the graphite-reinforced section is given by h = hg. The moment of inertia of the graphite-reinforced

section with respect to its centroid is given by the equation

bh3 (53)
Ig- 12

The area of the graphite-reinforced section is the base multiplied by the height:

Ag = bh .

The distance from the center top section to the centroid of the section is

(54)

Applying the parallel axis theorem,

(55)

Ig total = Ig + Agd 2 Ig total = 2.7875 × 10-3in. 4

The moment of inertia for the matrix (bottom) section of the beam can be calculated using

the same method. The base and the height of the matrix section axe

(56)

b = wc h = hc . (57)
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Themomentof inertiaof thematrixsectionwith respectto its centroidandtheareasaxe

bh 3

I c=--f-f- A c=bh .

The distance from the center of the matrix section to the centroid of the section is

(58)

The moment of inertia for the matrix with respect to the centroid of the composite beam
can be calculated as follows:

(59)

Ic total = Ic + Acd2 Ic total = 5.7864 × 10 3in.4 (60)

The total moment of inertia for the transform section is the sum of the moment of inertia for each

section:

Itotal=Ic total+/g total /total = 8.5739 X 10-3in. 4 (61)

The beam was subjected to a three-section bending test. A rigorous deflection analysis of the

beam test was performed to establish a base of comparison to finite element modeling and test data.

The comparisons provide insight into the accuracy of the methods used for the analysis.

The equation for the elastic curve of this beam will be derived as pax of this analysis. Although

a solution to this beam problem is available in the literature, it was important to develop the solution in

this TM because of variations in the boundary conditions. Laboratory testing strives to duplicate the

exact boundary conditions; however, it is sometimes impractical. The equations aided in determining

which boundary conditions had significant effects on the results being recorded. These equations were

solved for a variety of boundary conditions using a Mathcad 12 solution sheet (app. C). It should be noted

that with the aid of these equations and WD-40® lubricant, the test fixture eventually duplicated the

proper boundary conditions.

In general, the elastic equation for a curve is given by EI(d2/dx2)y = M(x). The moment in each

section of the beam (fig. 51) can be derived by passing a section through that location. In section 1

(x < a), for example, the moment at x is computed from the free-body diagram shown in figure 52 as Px.
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1

Figure 51. Free-body diagram of the beam.

/]/]1

Figure 52. Free-body diagram of section 1.

Substituting the later into the governing equation for section 1, x < a:

d 2
EI----_ y I = Px .

dx _
(62)

Integrating once,

Ei 4 y I px2
ax - -2 +CI"

(63)

Integrating again,

px 3

Ely I = _ + Clx + C 2 .
(64)
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Similarly,for section2,figure53,x > a but x < b:

d 2

EI_x2 Y2 = Pa

E14y 2 = Pax + C3
ax

(65)

(66)

Ely 2 P=--ax 2+C3x+C 4 .
2

Figure 53. Free-body diagram of section 2.

(67)

Finally, for section 3, figure 54, x > (a + b),

d 2

E1 _x 2 Y3 = 2Pa + Pb - Px
(68)

d Px 2
EI--y 3 = 2Pax + Pbx

dx
+ C5 (69)

Ely 3 = Pax 3 H
Pbx 2 px 3

2 6
+ C5x + C 6 • (70)

X m,

Figure 54. Free-body diagram of section 3.
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Summarizingtheequationsandreplacingthederivativewith 0,

px 2
EIOaY 1 = -- + Ca , (71)

2

EIO2Y 2 = Pax + C3 , (72)

EIO3Y 3 = 2Pax + Pbx - --
px 2

+ C5 , (73)

px 3

ElYa = T + Cax + C2 ' (74)

P

Ely 2 =-fax 2 +C3x +C 4 , (75)

and

Pbx 2 px 3

EIY3 = Pax3 -_ 2 6 + C5x + C6 " (76)

The equations must satisfy the boundary conditions. For example, at x = 0, Yl = 0, equation (74)
can be written

0= P
--_X3 +Clx o +C 2 • (77)

At x = a, equation (74) must equal equation (75); therefore,

X31+ClX I +C 2=Pax 2+C3x I +C 4 (78)

In addition, at x = a, Yl = Y2, and 01 = 0 2. Equation (71) must equal equation (72):

px 2
-- + C1 : Pax I + C 3 . (79)

2
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Fortheboundaryconditionx = (a + b), equation (75) equals equation (76):

P 2
7 ax2 + c3x2 + c4 = Pax 

Pbx2 PxB2 (80)
2 6 + C5x2 + C6 "

Continuing in the same manner, at x = (a + b), Y2 = Y3, and 02 = 03, then equation (72) equals
equation (73):

Pax2 + C3 = 2Pax2 + Pbx2 _ 2px__.._+ C5 .
2

(81)

Finally, for the boundary condition x = L, equation (76) must equal zero:

Pbx2 px3 (82)
0 = Pax 2 + 2 6 t-C5x 3 + C 6 .

Equations (71)-(76), with the given boundary conditions, represent a system of equations which

can be solved simultaneously for the constants C 1 through C 6. A Mathcad® solution was developed to

perform the calculations (app. C). Appendix C contains typical values for these constants. The elastic

curve equations may be restated as a function of x:

In section 1, x < a:

and

Yl(X)=EI_ 6 +Clx +C2

01(x)= gI_ 2 +C1 "

(83)

(84)

The value for the moment of inertia is set to the value calculated from the rule of mixtures and

the transform section method. The Young's modulus in the equation is set equal to that of the matrix; i.e.,

/=/total I = 8.574 x 10-3in. 4

E = Ematrix E = 1.15 × 105 lbf
in.2 (85)
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In section2, x > a < a + b:

and

Finally, in section 3, x > a + b:

Y2(X)=-_(Pax2 +C3x +C4)

02(x)=-_(Pax+C3)"

(86)

(87)

and

-_( Pbx2 px 3+C5x+C6)Y3(X) = Pax 2 4 2 6
(88)

__( px2) (89)03(x ) = 2Pax + Pbx- -- + C 5 .2

The composite beam was then subjected to the three-section bending test (fig. 55). Deflection

data were recorded at the center of the 9-in. beam.

Figure 55. Three-section bending test fixture.
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Theelasticbeamanalysiswasrepeatedfor eachof theloadstepsusedin thethree-sectionbeam
test.Theloadanddeflectionresultsaxelistedin thefollowingmatrices:

Load=

0

3.43
5.64
7.41

9.62
11.84
14.05
16.26
17.81

lbf, Ytest =

0

-0.0445

-0.0729

-0.0940

-0.1197

-0.1420

-0.1670

-0.1920

-0.2090

in', Ycal =

0

-0.0420

-0.0690

-0.0910

-0.1180

-0.1450

-0.1720

-0.1990

-0.2180

in. (90)

Figure 56 illustrates that the test results and the analytical data are in very good agreement. Error

bars on the analytical data represent the 6.4-percent standard deviation associated in determining

Young's modulus (table 8). This indicates that the transform section method of analysis can be used to

predict the deflections. However, the rule of mixtures must be applied to determine the effective Young's
modulus.

A

-.1

Test Data + Analytical Data

0 005

Figure 56.

0.10 0.15 0.20

Deflection (in.)

Transform section versus test results.

0.25
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4.11 Development of a Finite Element Model

An additional point of comparison was obtained by developing a finite element model of the

three-section beam test (fig. 57). The finite element model was developed for two reasons: (1) To con-

firm that the elastic beam analysis was correct and (2) to gain insight into modeling composite structures

using finite element codes. The finite element model was executed for each of the static test loads.

Y

DefaultDeformation:
Max2.46-01@NdB40

Figure 57. Finite element model.

The deflection results from the finite element model "specimen l" are as follows:

Yfem =

0

-0.0420

-0.0690

-0.0910

-0.1180

-0.1450

-0.1720

-0.1990

-0.2180

in. (91)
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The deflection results for both the elastic beam equation and the finite element model were plotted

with the deflections from the three-section bending test.

It is significant that the transform section method of analysis returns the same deflections as the

finite element solution. This leads to the conclusion that the transform section method of analysis can be

used for the analysis of a composite in which the Young's modulus ratio is high, provided the effective

material property data are included in the calculations. Figure 57 indicates that both of the analytical

methods satisfactorily predict the results of the bending test (fig. 58). The error between the elastic beam

equations and the test data is relatively small:

Ytest step - Y2( 4"5 in')
Aerro r = × 100%

Ytest step

Aerro r =-4.52% . (92)

20

18

16

14

12

•-' 8

6

4

2

0

Test Data + Analytical Data _ FiniteElement

0 0.05 0.10 0.15 0.20 0.25

Deflection(in.)

Figure 58. Transform section, finite element, and test results.

4.12 Calculate the Deflection for a Five-Layer Plate in Pure Bending

Section 4.2 demonstrates the analysis of a composite beam made from the graphite-reinforced

cementitious material. The University of Alabama in Huntsville (UAH) concrete canoe team produced

a large plate that is similar to the layups used in canoe construction. A test article 5 in. wide and 15 in.

long was cut from the composite plate. The challenge is to determine the deflections of the plate using

the information gained from the material properties of the constituents, the rule and mixtures, and the

transform section method of analysis. These axe the tools and information that axe available to the
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students at the time they axe designing these competitive canoes. The beam is a buildup of five layers

as shown in figure 59.

m

0.3 in.

1

f...........i'ii.........i GraphiteFiber
/ andMatrixMaterial

0.05 in.

0.075in.

.05in.

0.075in.

.......................\___IO0,,n
MatrixMaterial

Figure 59. Cross section of multilayered composite beam.

The properties of the beam can be calculated by using the transform section method and the

effective material properties as determined from the rule mixtures. The effective Young's modulus for the

three graphite and matrix sections is

lbf (93)
E 2 = 5.04 × 105 in.2

The Young's modulus for the matrix material, El, is determined from tensile testing of the

cementitious material (app. B):

lbf (94)
E 1 = 115 × 103 in.2

It was previously established that the Young's modulus ratio must be <20 for the transform

section method to be accurate. Using the values established here, the Young's modulus ratio is calculated

and is within acceptable limits:

q= E2 q= 4.383. (95)
E1
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Thedimensionof thegraphitesectionsis transformedby multiplyingthewidth of thesectionsby
77.A Mathcadsolutionsheet(app.C) wasusedto performthecalculationsfor determiningthemoment
of inertiafor thebeam.Thesecalculationsaxealsodescribedin section4.10.Themomentof inertiafor
thiscrosssectionwascalculatedto be

/total = 38.2 × 10 -3 in.4 (96)

In general, the procedure for determining the properties of multilayer beams is the same as that

for a single-layer beam. It is interesting to note that the graphite section in the middle of the beam does

not contribute significantly to the bending strength. The beam is placed in a three-section bending test

with the specimen supported over a 15-in. span and loaded at two points, each located at a distance of

2.25 in. from the center of the span. Members of the UAH canoe team performed the testing during the

1999-2000 school year. This test was typical of those used by the team to evaluate the composite

designs considered for the canoe.

The elastic beam equation for this problem was provided previously. The deflection of the center

of the beam was calculated for the same loads used in the beam tests. Equations (86) and (87) are used
for the deflection calculations:

Y2(x)=l (Pax2 +C3x +C4)
(97)

and

02(x)=-_(Pax+C3) •
(98)

The calculations were made using the Mathcad solution sheet (app. C). The derivation

for the beam equation is described in detail in section 4.10. Young's modulus used in the equation

is from the matrix material: E 1 = 115 × 103 lbf/in. 2

The results of this analysis axe compared to the results from the bending test. As shown in figure

60, they compare well at deflections <0.25 in., then diverge as the deflections reach higher values. The

test results also appear to be slightly nonlinear. The nonlinear behavior of the displacements suggests

that the material properties are nonlinear.

The stress-strain curve for the test specimen can be established from the flexure formula

and the moment in the beam. The strain is calculated from the stress and based on the Young's modulus
of the matrix as follows:

M(x)c t a(x)

c (x) - I c = e(x) = Ematrix (99)
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Figure 60. Deflection of multilayer beam versus test data (linear).

These calculations are presented in detail in the Mathcad solution sheet (app. C). The stress-

strain curve from the test specimen can now be compared to the stress-strain curve for the matrix

material. Figure 61 shows the stress-strain curve for the beam and the matrix material.
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The experimental curve in figure 61 is derived from a combination of test and analysis. The first

section of the curve is from tensile testing using extensometers in the axial direction; the tensile test

specimens failed at ~2,000 microstrain. The stress-strain curve beyond that point is derived from the

tensile test data using a least-squares method to determine an equation for the curve. 2

Y_ Y_( )2 Y_bOY/+ bl 2 Crmatrix/+ b2 2 Crmatrix/ : 2 Ematrixi
i=1 i=1 i=1

2
Y/ Y/ +' f ma'ixit3: f ma'ixit  ma'ixi>

3
rz 2 rz

i=1 i=1
>4: ('ma r xt ( ma r x>"

These equations are solved for the minimum values of b0, b 1, and b2:

(lOO)

= b0 + blO'matrix + b2(O'matrix) 2 (lOl)

Equation (101) is the resulting stress-strain relationship used to extend the data for the tensile

test. The resulting curve is an approximation that does not represent actual material properties and is

only used to facilitate the analysis. This analytical method was developed by Balaguru 2 for the nonlinear

analysis of ferrocement in bending.

The question arises as to whether the tension or compression properties of the matrix are deter-

mining the nonlinear behavior of the plate. Therefore, the compression properties of the matrix must also

be considered. 2 Figure 62 compares the analytical curve for tensile properties with the compression

properties from the compression test. The data for the tensile (analytical) and compression (test) proper-

ties axe in good agreement up to 6,000 microstrain. Furthermore, both curves indicate nonlinear behavior

beyond the 2,000 microstrain level.

Since Young's modulus is in the nonlinear region, it must be recalculated as the load increases

beyond 2,000 microstrain. The elastic beam equation is then used with the nonlinear Young's modulus

to calculate the deflections at the higher load levels. These calculations are illustrated in the Mathcad

solution sheet (app. C). The results axe compared to the test data from the three-section bending test. The

error bars on the analytical data represent the 6.4-percent standard deviation associated in determining

Young's modulus. As illustrated in figure 63, the data compares fairly well to the test results, even in the

nonlinear region of the curve.
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Figure 62. Tension versus compression properties for matrix material.
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The preceding analysis indicates that the combination of effective material properties and the

transform section method can be used to determine the deflection of multilayered composite beams. This

is similar to the work presented by Balaguru 2 for the nonlinear behavior of ferrocement. These data also

indicate that as the matrix material becomes nonlinear, the deflection curve follows the same trend,

indicating that the bond between the fiber material and the matrix material may be slipping. However,
it should be noted that the beam did not fail even when the tension strain levels were far above the

maximum tension strain found when testing the matrix material.

It must be pointed out that several deficiencies exist in the preceding analysis. The first is recog-

nizing that the Young's modulus ratio is constantly changing as the matrix material becomes nonlinear.

This implies that the moment of inertia for the beam is also changing. These changes axe not considered

in the analysis. In addition, this method of analysis does not provide a means to determine the strains or

stresses in each layer of the composite beam.

4.13 Summary of the Rule of Mixtures Analysis

The rule of mixtures provides a method of calculating the effective material properties of the

composite from the volume fraction and material properties of the constituents. Comparing the effective

material properties with the data from the tensile and shear tests provided a measure of accuracy for this

method. Young's modulus in the axial direction (El) was 11 percent lower than the value found in the

tensile test. However, Young's modulus in the transverse direction (E2) and Poisson's ratio (v12) did not

agree with the test data. The poor comparison for E 2 and v12 was not unexpected, since the composite

under consideration has fibers running in the transverse direction. These fibers are not considered in the

rule of mixtures theory. The shear modulus G12 was 39 percent lower than the value found in two test

specimens.

Although the information derived from the rule of mixtures is limited, it was used successfully to

predict the deflection of single and multilayer composite beams. The analysis used the transform section

method and the elastic beam equation to demonstrate that the effective Young's modulus (El) could be

used to predict deflections for a beam in pure bending. The analysis was verified by comparison to test

data and finite element models, and the analysis was extended to predict the nonlinear behavior of

composite material.

The fact remains, however, that these derivations are limited to the case in which the fibers are

running in the axial direction. This limitation can be overcome by applying the laminated plate theory

of composites to the cementitious composite in question. 1°
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5. LAMINATED PLATE THEORY OF COMPOSITES

The rule of mixtures is limited by the assumption that the fibers axe aligned in the direction of the

load. 4,10 Laminated plate theory for composites offers a more complete analytical tool, provided this

class of material is compatible with the assumptions and derivations involved with the theory. Beginning

with laminated plate theory, the laminated composite plate equations will be derived. The derivations

will be programmed into a Mathcad 24 solution sheet (app. D) to provide an automated method for

solving the equations. The equations will be arranged to form a system of simultaneous equations from
which an exact solution can be found. The solution includes all elements of the stiffness matrix and can

be used for symmetric or nonsymmetric laminated plates. The program is used to analyze a composite

plate for which the results axe well known. Comparisons axe made with other programs to demonstrate

an increase in accuracy. A finite element model is generated to provide a verification of the methods and

establish the procedures for modeling composite beams.

5.1 Plate Theory

Figure 64 shows a load-free plate where the midplane point A coincides with the x-y plane. The

deflection in the z direction is zero for all points on the plate. The deflection components at a point in the

x, y, and z directions axe given by u, v, and w, respectively.

X a X

Figure 64. Load-free plate.

The fundamental assumptions of the small deflection theory of bending for isotropic, homoge-

neous, elastic thin plates axe based on their geometry. These assumptions axe known as the Kirchhoff

hypotheses and can be stated as follows: 1°

• The midsurface deflection is small compared with the plate thickness. The slope

of the deflected surface is very small and the square of slope is negligible.

• The midplane remains unstrained subsequent to bending.
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• Planesectionsinitially normalto themidsurfaceremainplaneandnormalto surface
afterthebending.

• Thestressnormalto themidplane(oz)is smallcomparedto theotherstresscomponents
andmaybeneglected.

A platecanbedeformedbynormal,shear,andbendingloads.Thedisplacementsin thex, y, z

directions axe defined as u, v, w, respectfully. Figure 65 shows a plate experiencing normal stresses. 2°

Y0

L

Deformed

Undeformed

x
IP

Figure 65. Plate with normal displacements.

The strains for this displacement state in the x and y directions axe defined by

and

d (102)
E x iI i udx

d

ey = dy v , (103)

respectively.

Figure 66, on the other hand, shows that when shear stresses are applied to a plate, they produce

strains that are a function of both u and v displacements. 2°

The equation for the in-plane shear strain is

d d

Y_ = dy u +Ivdx "
(104)
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Figure 66. Shear displacement of plate.

The total in-plane displacement at any point in a plate is the sum of the normal displacements plus the

displacements induced by bending. Figure 67 shows the geometry associated with a plate in bending. 9

Top a

Mid t b -zZ x
Bottom c
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I
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t i
t i

Figure 67. Bending displacement.

The displacement along the z direction due to bending is z x sin(0). Since 0 is small, sin(0) = 0,

and the displacement is zO. In addition, from the geometry, it is clear that 0 is the slope of the plate,

dldx x w.
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The displacements of the midplane of the plate in the x and y directions are defined as uo and vo,

respectively. Then the displacement in the x direction can be defined in terms of the midplane displace-

ment, the slope of the plate, and the location from the midplaa-le as

d

u = uo - z--d;xWo . (105)

Similarly, the displacement in the y direction is

d
V = V0 -- Z--_.. W 0 .

uy
(106)

The Kirchoff hypotheses state that plane sections remain plane. This implies that there is no

strain in the z direction. According to Kirchoff, the normal and shear strains in the z direction may be
written as

d
ez = --w ez = 0 (107)

dz

d d
_'xz = --w + --u _'xz = 0 (108)

dx dz

d d (109)
7yz =--w +--v 7yz =O .dy dz

When the displacements in equations (105) and (106) are substituted into equations (102)-(104),

the strain equation accounts for the midplane displacements and the bending displacements and is
written as

d d 2 (110)
ex = -_xu° - z dx--g w o

d d 2

ey = --d-fyVO - Z_y 2 W O
(111)

O O 2 z __d__d__q__d
r_ = G-yu° + _ v° - dx dy w°" (112)
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Theseequationscanbefurthersimplifiedbydefiningthemidplanestrainsas

d

EOx = _ Uo
(113)

(114)

d d

ro_ = Ty-y"o +GVo.
(115)

Substituting equations (113)-(115) into equations (110)-(112) results in the strain equations written

in terms of the midplane strains: 1°

d d 2

ex = _ u o - z dx----_ w o
(116)

d 2

_x = _Ox - z dx-----7 w 0
(117)

d d 2

ey = --d-fyVO - Z_y2 WO

d 2

Ey = EOy - Z_y2 W0

(118)

(119)

3 3 _ 2z__d_dd
r_ = _ Uo+ _ Vo dx dyw°

(120)

_2zd dw_ ,
7_ = 7o_ dx dy " "

The midplane surface curvatures are now defined as follows: 1°

(121)

(122)

d 2

Ky - dY 2 w o (123)
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= 2__q__d__q__dw
KxY dxdy O" (124)

Finally, the strain equations may be stated in matrix form:

E x
Ey

7xy

=1E0v -z Ky
(125)

5.2 Generalized Hooke's Law for Nonisotropic Materials

For isotropic materials (properties are the same in any direction), the relationship between stress

and strain is independent of the direction of the force. Young's modulus is the only elastic constant

required to describe the stress-strain relationship for a uniaxial force.

For a nonisotropic material, at least two elastic constants axe needed to describe the stress-strain

behavior of the material. Consider, for example, the case of a nonisotropic plate made of a fiber-

reinforced material (fig. 68). The fibers are in direction 1, resulting in the direction 1 properties being

much higher than the direction 2 properties.

Reinforcement
in Direction 1

, 1

Figure 68. Nonisotropic plate with fiber reinforcement.

A special case of anisotropy is the existence of two perpendicular planes of symmetry in material

properties. Such materials are referred to as orthotropic. This configuration is characteristic of a lami-

nated composite that may have different material properties in the perpendicular planes. In general, the

properties of the material are direction specific.
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Theanalysisof anorthotropicsystemmusttakeintoaccountthedirectionof thematerialproper-
ties.Forsuchasystem,thestresscanbeexpressedfor eachdirectionas

(Yl = E1E1
(126)

and

(Y2 = E282 •

Consider the case shown in figure 69; an applied load acts parallel to the fibers.

(127)

Deformed Shape _ tl L Force

I

| ...... _F_rc'e _ ....

Figure 69. Applied load parallel to fibers.

This type of loading produces stress in more than one direction within the plate and is referred

to as plane stress. The plate is elongated in direction 1 and contracted in direction 2. This illustrates the

Poisson's effect, which may be defined as

V12 - -e2 (128)
E1
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Thetotalstrainin theorthotropicmaterialmustconsiderthePoisson'sratioeffectfor each
direction.Thestrainin theplateis nowafunctionof severalmaterialproperties:

and

o2 (129)
E2 = E7 - v12E 1

if_L_

e1 = E1 v21e 2 . (130)

Shear forces must also be considered in the plate analysis. Shear stress is related to the shear

strain by a material constant called the shear modulus (G). As with the normal stress, the shear stress (_)
must be defined in terms of the direction of the material as follows:

r12 = _12G12 •

In general, the equations for strains can be expressed in terms of stress and the orthotropic

material properties (Young's modulus, Poisson ratio, and the shear modulus) as

(131)

(132)

O-2 O-1
E2 - V12 --

E2 E1
(133)

These equations can be expressed in matrix form as follows:

(134)

E2 =

_/12

1 V21

E1 E2

v12 1

E2

0 0

0

0 o'2 •

1 _12

G12

(135)
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The 3 × 3 matrix in equation (135) is made up entirely of material properties for the orthotropic material.

This matrix is called the compliance matrix (S):

S

1 v21 0

E1 E2

v12 1
0

E1 E2
1

0 0
G12

(136)

Equation (135) may be rewritten to form an equation for the stress:

[ 11G 2 =[S] -1 82 .

/'12 1712J

(137)

Furthermore, v12/E1 = v21/E2, then the stiffness matrix (Q) can now be defined as the inverse of the

compliance matrix (S) as follows:

O = [S] 1 =

E1 -E2 E 2-v21E1
(-E 2 + Va2V21Ea) (-E 2 + Va2V21Ea

0

E 2 -1
-v12E1 E 2 0

(-E 2 + Va2V21Ea (-E 2 + Va2V21Ea)

0 0 G12

(138)

Finally, the stress equation can be expressed as a function of the stiffness matrix (Q) to further simplify

the equation:

G1 ] [ E1
G 2 = Q E 2

_'12 L712

(139)
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5.3 Plane Stress for Generally Orthotropic Plates

The previous discussion was limited to the case in which the load is either parallel or perpendicu-

lax to the principal material directions of the lamina; i.e., reinforcement fibers. In general, the loading is

not in the principal material direction. The equations for the generally orthotropic plates transform the

stress and strain into coordinates that coincide with the principal material directions. Figure 70 is a free-

body diagram of a composite laminate; it indicates the directions of the stress in relation to the direction

of the reinforcement fiber. Direction 1 is the direction of the fiber and direction 2 is perpendicular to the
fiber.

2

_xy' x

Figure 70. Direction of stress.

The transformation of plane stress is a fundamental part of mechanics of materials. In the case

of composite materials, the idea is to transform the stress from the direction of the load to the principal

material direction. As shown in figure 71, the element is cut to produce an area, AA. A free-body

diagram is used to sum the forces in direction 1.

_x

Txy x

Figure 71. Sum force in direction 1.
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Thesumof theforcesin direction1,for example,resultsin thefollowingequationfor O-1:

0 = O-IAA - (Tjc(AA cos 0) cos 0- Cry(AA sin 0)sin 0

+ -/.ry (AA cos 0) sin0-/.ry (AA sin 0)cos 0 .

From the free-body diagram of figure 72, the sum of the forces in direction 2 results

in an equation for o 2 •

(140)

0 = o"2AA - o"x (AA sin O) sinO- Cry(AA cos 0) cos 0

+ "cry(AA cos 0) sin 0 + "cry (AA sin 0) cos 0 . (141)

_2

y
_12 _

Figure 72. Sum force in direction 2.

Using figure 72, sum the forces in direction 1 to obtain an equation for/12:

0 = rl2AA + _xAA sin0cos0- (_TyAAcosOsinO)

+ (-rryAAcos0cos0) + rxyAAsinOsinO (142)

Simplifying equations (140)-(142) and solving for the stresses in the direction of the principal material

direction yields the stress transformation equations:

O-1 = o-x COS02 + Cry c°s02 + 2/.ry sin0cos 0
(143)

o-2 = o-x sin02 + Cry c°s02 - 2/.ry sin0cos 0 (144)

/'12 = -O-x sinOcos 0 + o"y sinOcos 0 +/'ry (cosO 2 - sinO 2) (145)
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Equations (140)-(142) can now be written in matrix form:

[ 110- 2 = sin0 2 cos0 2

I'12 -sin0cos0 sin0cos 0

2sin0cos0

-2 sin 0cos 0

cos 0 2 - sin 0 2
G x

Gy

Txy

(146)

The 3 x 3 matrix is known as the transformation matrix (T):

cos02 sin02 2sin0cos0 ]
T=] sin02 cos02 -2sin0cos0

[-sin0cos0 sin0cos0 cos 02 - sin 02 ]

(147)

Thus, the stress transformation equation (146) may be written in terms of (T) as follows:

°1]0" 2 =

_712

O" X

T

rxy

(148)

Similarly, to transform from the 1-2 coordinate system to the x-y coordinate system, use the inverse
of the transformation matrix:

xI:)-y =T-1 O-2 .

Lr12J

(149)

The strains can be transformed in the same manner as the stresses. Equations (150) and (151) represent
the transformation of strain:

E 1 E x

E2 = T ey

]"1___.!2 ]"xy

_2 _2

(150)
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E X

Ey

_2

= T-1

E1

_2

12

2

(151)

However, the strain transformation equation (151) creates a numerical problem. The shear strain

term (Y12/2) is not compatible with the shear strain term from equation (139),)'12" To overcome this

problem, a factor of 2 is introduced into the matrix equations as follows:

_v

E

-1 0 0- Ex

OLO1I
OO2

(152)

The resulting matrix is called Reuter's matrix (R):

R = 1 . (153)

0

The shear strain values can be multiplied as needed to combine the transformation equations (148)-

(151) with the compliance equation (139). These derivations are provided in the Mathcad program listed

in appendix D. The resulting equation is as follows:

I 1Crx Ex

Cry = T-aQRTR -1 ey •

rxy Jxy

(154)

Equation (154) illustrates the transformed stiffness relationship between the stresses and strains

for an orthotropic plate. This equation provides the stress-strain relationship in the x-y direction.
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Equation(154)is difficult to workwith becauseof thenumberof matricesinvolved.However,
theequationcanbesimplifiedtothreematricesby definingthetransformedreducedstiffnessmatrix

(Q):

-_= T-1QRTR-1

Finally, equation (154) may be written in terms of Q •

(155)

IixCry = Q Ey

rxy Yxy

(156)

i

The Q matrix is a 3 × 3 matrix that represents the transformation of the stiffness matrix (Q). The terms

in the matrix contain four independent material properties and the angle between the reinforcement
fibers and the load.

5.4 Mechanics of Laminated Composite Plates

The strain equations for a plate in bending must now be related to a plate made from several

layers or lamina. Solving equation (156) for the strain values results in the following:

ix]r x1Ey =-_-1 Cry .

Y_ L%J

The midplane strains and the curvatures can now be equated to the stress values by combining

equations (125) and (157),

(157)

rxlrox]i/,x1_'-1 Cry =/e°Y -z ,cy .
L_J Lro_ [K_j

(158)
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Simplifyingequation(158)andsolvingfor thestressmatrixresultsin anequationfor thestressin terms
of themidplanestrainsandcurvatures:

I=Q/
LTo J

(159)

Equation (159) represents the stress in each ply of the laminate for an orthotropic plate.

5.5 Determination of Force and Moment Resultants

The resultant forces and moments acting on a laminate axe a function of the stresses on each

layer through the thickness of the plate. The force and moment resultants axe important for the analysis

of composite plates because the stress in the plate varies from top to bottom. The force and the moment

act at the midplane of the plate in the same direction as the stresses.

Figure 73 illustrates the normal and shear forces that act on a plate. The resultant force can be

found by the summation of the stress multiplied by the area. The sum of the forces can also be found

by integration of the stress multiplied over the thickness (t) of the plate, then multiplied by the area.

Figure 74 represents a cross section of a plate. The width (w) times an incremental thickness (dz)

represents the area over which the force is acting.

z y

x

Figure 73. Resultant forces.

t

z=_

Z=0 -

-t
Z_--m

2

Figure 74.

Y

Integration over width of plate.
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Equation(160)representstheforcesactingontheplate:

t

n 2

The width (w) of the plate occurs on both sides of the equation and cancels. This allows

the resultant force to be defined in units of force per unit length. The resultant force per unit length

at the midplane of the plate is defined as

(160)

t

2

Similarly, for the remaining directions of stress,

(161)

Ny = I_ydz
m

2

and

t

2

In matrix form, these equations can be written as

(162)

(163)

N_ 2-L_

(164)

Figure 75 illustrates the moments acting on a plate. The resultant moments for the midplane

of each plate can also be calculated from the stresses. The moments are defined as the sum of the stress

multiplied by the area, multiplied by the moment arm with respect to the midplane. The moments axe

also defined in terms of unit lengths. The moment equations axe as follows:
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t

Mjc = 12t crjcz 8z

2

(165)

t

My = I 2t cryz dz

2

(166)

t

2

(167)

z Y My

p,

My x

Figure 75. Resultant moments on plate.

In the same manner as the forces, the moments can be stated in a matrix equation:

I

M_ J-_ L"c_J
2

dz. (168)

5.6 Laminate Constitutive Equations

Equations (164) and (168) define the forces and moments acting on the midplane of the plate

in terms of the plate stresses. Equation (159) defines the stresses acting on any layer in the plate in terms

of the midplane strains and plate curvatures. The midplane strains axe functions of the midplane dis-

placements and the midplane curvatures axe functions of the displacement (w). Equations (159), (164),

and (168) are the plate constitutive equations.
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Equations (164) and (168) must be modified to define the midplane forces and moments for each

layer in the plate. This can be done by recognizing that the stress resultants can be expressed as the sum

of the stress resultant for each layer. Letting n represent the number of layers in the plate, the equation
for the forces becomes

Ny: / (169)

Similarly, the equations for moments are written as

_ :2/ /_/z dz . (170)

The integration parameters have now changed from the thickness of the plate to the location

of the top and bottom of each layer. Figure 76 illustrates the integration terms.

z

k=n

k=n-1

k= n- 2 Midplane

k=n-3

k=n-4

k=n-5

i hn-ll hn

....__,.__......_....;_....
hn- 3 _ hn_ 41 hhn- 5

x

Figure 76. Layer location.
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Theequationfor thetransformedstress,equation(159),canbesubstitutedintotheequationsfor
themidplaneforcesandmoments.Theresultingequations(171)and(172)statetheforcesandmoments
in termsof thestrainandcurvatures:

Nx_I I[_°x1_x
Ny: /
Nxy = , LYOqj LK_

.) h(k-1) L

(171)

M_ = ' LTo-_ LK_I•) h(,_-i)L

z dz . (172)

Integrating these equations is relatively simple because the matrices eo and K axe not functions

of z and axe not included in the integration. The plate stiffness matrix ( Q ) is constant over the thickness

of any layer; equation (172) can be written as

[Nx1:III ox1Q ]rr'l+Q, ]Ny_=1////_1__z _lZ_Z
Nx7 LLLro__l L LK_J -

(173)

Performing the integration results in the following equation:

[NxI III °xI ][[-122]+ -Q Ky hk 2 hk-1_ :FI/F/_o__-__1t --
NxY = LLLro_ Kxs

(174)
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Themomentequationcanalsobesimplifiedas

[1 1[ 11= + zQ Ky zM__ll Iq_°_ _z
M_ = , L7o_

(175)

['1I ox122][ 1]_y=_//_/_oy_1 +_y 33
M_ =LL L_o_ L F%

(176)

Note that the midsurface strains (eo) and the curvatures (K) are not pax of the summations.

The stiffness (Q) and the h_ terms can be summed outside equations (174) and (176) to form
new matrices, and the equations become

['1 r-Ny =AleoY + B Ky

N_ Lro_ LK,_
(177)

and

I I'1My=_/_oy/+DKy .
s,/_ LYo_j [K_J

(178)

In equation (177), matrix A is called the extensional stiffness matrix. This matrix relates the

normal stress and strains similar to the modulus of elasticity. However, if the matrix terms A13 and A23

are nonzero and the plate has a shear load applied to it, normal stresses will be produced:

?Z

A=Z[_,l(h_-h__l)]•
k=l

(179)

The thickness of the kth layer can be defined as t_, where t_ = h_- h_ 1"Then equation (179) carl be

written as a function of the thickness of the layer:
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Y1

k=l

(18o)

The B matrix in equations (177) and (178) is called the coupling stiffness matrix. The B matrix

relates bending strains with normal stresses:

r_ [1.2 /*2 ]
(181)

This equation can also be stated as a function of the layer thickness (z_) and the distance from the layer

midplane to the center of the kth layer. Defining zk with the following equation,

hk + hk-1 (182)
z/c- 2

The equation for the coupling matrix B may be stated as

Y1

8 =X
k=l

(183)

The coupling stiffness matrix has substantial influence on a laminated composite plate. A non-

zero B matrix implies that an axial load will cause the plate to bend and/or twist. Also, any moment

applied to the plate will cause extension of the plate midplane. This coupling between bending and

extension is key to understanding composite plates, and neglecting the effects of the B matrix could be

catastrophic to a composite structure.

The D matrix in equation (178) is called the bending stiffness matrix. This matrix relates

the plate curvatures with the bending moments:

x--,_ [ 3

-- h_: - h3_1
D = :_Qk,1;71 3

(184)

The equations for D can also be written in terms of tk and z k :

(185)

87



5.7 Effective Engineering Properties for Laminated Composite Plates

The effective engineering properties axe determined from the A, B, and D matrices. The concept

is to determine the longitudinal Young's modulus (Ex), transverse Young's modulus (Ey), shear modulus

Gxy, and longitudinal Poisson ratio (vxy) of the laminate (plate) from the E 1, E 2, G12, and v12 material
properties of one of the layers. A plate can be designed and optimized by varying the angles of the

reinforcement fibers in each layer.

Recalling Hooke's law for an isotropic plate, E x = c_x/ex. Similarly, the relationship developed

for laminates relates the midplane force to the axial strain:

N X

Ex m

he x

where h is the laminate thickness.

Equations (177) and (178) may be combined to form a linear system of equations. The force

and moment equation may be written as follows:

(186)

Nx

Ny

Nx 7

M x

My

_Mxy

-All

A21

A31

Bll

B21

B31

A12 A13 Bll B12 B13

A22 A23 B21 B22 B23

A32 A33 B31 B32 B33

B12 B13 Dl1 D12 D13

B22 B23 D21 D22 D23

B32 B33 D31 D32 D33

EOx

EOy

)"Oxy

Kx

Ky

_Kxy

(187)

This relationship is a system of six equations and six unknowns. The midplane strains and curvatures

are the unknowns. The A, B, and D matrices axe constants.

The force and moment matrix can be defined to determine the effective material properties

for the composite. In the symmetric case, the layers above the midplane are identical to the layers below

the midplane, resulting in zero values for the B matrix. This greatly reduces the size and complexity

of the solution. For this analysis, however, the case of nonsymmetric plates is considered.

5.8 Calculation of Effective Material Properties

The solution to the system of equations (187) is best demonstrated through an example prob-

lem. A Mathcad solution sheet (app. D) contains the calculations used in this example. Consider,
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for example,aplatethatismadeupof four fiber-reinforcedlayersasshownin figure77.Theangles
of thereinforcementsaxe0° and45°andeachlayeris 0.005in. thick.

0=0 °

0 =45° Midplane

0 =45°

O=0°

X

Figure 77. Angle of fiber reinforcement.

The following material constants axe assumed for an arbitrary composite material:

• Young's modulus in the principal material direction 1: E 1 = 20.01 × 106 lbf/in. 2

• Young's modulus in the principal material direction 2: E 2 = 1.301 × 106 lbf/in. 2

• Shear modulus in the principal material direction 1-2:G12 = 1.001 × 106 lbf/in. 2

• Poisson's ratio in direction 1-2:v12 = 0.30

• Poisson's ratio in direction 2-1:v21 = v12E2/E1 .

The compliance matrix is determined as follows from equation (137):

S

1 -V12

E 1 E 2

-V21 1

E 2 E 2

0 0

0

1

G12

4.998 × 10 -8

= -1.499×10 -8

0×100

-1"499×10-8 0×10° ] lbf

7"686×10-7 0×10° ]in.20×100 9.99×10 .7

(188)

The stiffness matrix, inverse of the compliance matrix, is calculated from equation (138):
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Q=S -1 =

-2.013×107 3.926×105 0

3.926 × 105 1.309 × 106 0

0 0 1.001×106

lbf (189)
in. 2

The geometry of the layup is then used to determine the transformation matrix. These data axe presented

in detail in the Mathcad solution sheet (app. D). The transformation matrix is derived from the stress

transformation equation. The matrix is solved for each ply angle:

L

cos 0 2 • 2sm 0y_ 2 sin 0y_cos 0y_

sin02 cos02 -2 sin 0y_cos 0y_

-sin0y_cos0y_ sin0y_cos0y_ cos 02 - sin 02

(190)

li°il :1Plyl:T 1= 1 Ply 2:T 2= 0.5 0.5

0 -0.5 0.5

1 li0ilPly 3:T 1= 0.5 0.5 Ply 4:T 1= 1 .

_0.5 0.5 0

(191)

m

As previously described, Reuter's matrix (R) is used to condition the Q matrix:

R = 1 . (192)

0

m m

The Q matrix represents the stiffness and transform matrix; the Q matrix is calculated for each

ply using equation (193):

-_ = TyT1QRT_R-1 . (193)

2.01x107 3.93x105 0 ]
QI=/3.93×105 1.31×106 0 lbf

0 1×106j in'2[o
(194)

6.56 x 106 4.55 xl05

=/4.55×105 6.56×106
[ 4.7×106 4.7×106

4.7×10 6

4.7×10 6

5.16×10 6

lbf

in.2
(195)
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Q3

-6.56×106 4.55×106 4.7×106

4.55×105 6.56×106 4.7×106

4.7×106 4.7×106 5.16×106

lbf

in. 2
(196)

2.01×107 3.93×105 0×100-

Q4=13.93×105 1.31×106 0×100

L 0×100 0×100 1×106

lbf

in. 2
(197)

As expected, the plies with the same angles axe equivalent.

The A matrix, or the extensional stiffness matrix, is calculated using equation (180):

plies [2.67 × 105

A = k_al -Qk tk = [4.95 ×104
= L 4"7×104

4.95 × 104 4.7 × 104

7.87 × 104 4.7 × 104

4.7×104 6.16×104

lbf

in.
(198)

The B matrix, or the coupling stiffness matrix, is calculated using equation (183). In the case

of a symmetric plate, the B matrix is zero:

B = _ Qk tk zk = - -0 lbfin.
- 0

(199)

The D matrix, or the bending stiffness matrix, is calculated using equation (185). These values

indicate how the bending moments will affect the plate curvatures:

plies (,3 ) [ 1"23×101 6"09×10-1 3"92×10-1]
D = Qk + tk zk

3.92×10 -1 3.92×10 -1 1.01×10 o ]

lbf in. (200)

Since the A, B, and D matrices are defined, equation (187) can be solved for the strains

and curvatures. However, the loads must first be defined. In the Mathcad solution sheet, the load

matrix is created to represent the forces and moments at the midplane of the laminate. The load matrix

is from equation (187). In the first case, a uniaxial load is applied in the x direction:
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-N x

Ny

N_

Mx

My

_M_

1

0

0

0

0

0

lbf (201)
in.

A global matrix that represents the stiffness matrix in equation (187) is constructed from the A,

B, and D matrices. Equation (187) may now be written in terms of the loads and the global stiffness
matrix:

1

0

0

0

0

0

lbf

in.

-266841.87 49470.05 47047.8 0 -0 0

49470.05 78650.66 47047.8 -0 -0 0

47047.8 47047.8 61638.11 0 0 0

0 -0 0 12.29 0.61 0.39

-0 -0 0 0.61 1.31 0.39

0 0 0 0.39 0.39 1.01

Eox

EOy

7ox_

K x

Ky

_Kxy

(202)

This system of equations represents a plate with a uniaxial load applied in the x direction.

There are six equations and six unknown strain and curvature values. A Mathcad subroutine, lsolve,

is used to find a solution to the system of equations. The lsolve function retums values for strains

and curvatures. Hooke's law can then be applied to determine Young's modulus and Poisson's ratio:

• Young's modulus in x:

Ex_ N x _1.13×107 lbf (203)
heo x in.2

• Poisson's ratio:

-eOY - 3.17 × 10 -1 (204)
Vxy- EOx

The effective modulus in the y direction is found by assuming a unit force in the y direction and

setting all other forces and moments to zero. The system of equations is now solved with the boundary

conditions for a uniaxial load in the y direction. Then based on Hooke's Law, Young's modulus and
Poisson's ratio can be calculated:
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• Young'smodulusin x:

• Poisson's ratio:

Ny lbf

E y - heoy - 2.0972 x 106 in.2
(205)

- -e°x = 5.87 x 10 .2
Vyx - --

EOy

(206)

The effective shear modulus is found by assuming a unit force in the x-y direction and setting all

other forces and moments to zero. The shear modulus (Gxy) is a function of the shear load and the shear
strain:

• Shear modulus:

Nxy lbf (207)
Gxy - - 3.22 × 106

hYoxy in.2

5.9 Comparison of Results for the Symmetric Solution

The engineering properties for a symmetric laminate can be compared to solutions from a num-

ber of sources. This comparison illustrates that the method used for finding a solution to the constitutive

equation (187) significantly affects the accuracy of the calculations. For example, Halpin 9 reduces the

constitutive equations by assuming the A 1,3 and A2, 3 terms in the A matrix axe zero. This results in the

following equations for the material properties:

Halpin =

A 2
A1,1A2,2- (1,2) (208)

A2,2h

and

Ey Halpin =

A 2
Al,lA2,2- (1,2) (209)

Al,lh

A3, 3 (210)
Gxy Halpin h

Nettles, 2° on the other hand, includes all the terms in the A matrix and is able to develop the following

equations for the materials properties:
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A ,3A ,2A3,3-(A ,3)2A2,3
A , (A3,3)2-(A ,3)2A3,3

and

{A ]2{A ]2 {A ]2{A ]2-

Gxy A3,3 (A2,3) 2 2A1,3A1,2A2,2A2,3-_ 1,2] _ 2,3] -_ 1,3] _ 2,2]

(212)

(213)

Although Nettles' method is an improvement over the Halpin method, these equations do not apply

to the nonsymmetric case. When the A1, 3 and A2, 3 terms axe set equal to zero, the Nettles 2° equations
reduce to the Halpin 9 equations.

Table 11 is a comparison of results obtained from several commercially available computer

programs for laminated composite plate analysis.

Table 11. Results from different laminated plate solution techniques.

Exact 1.13×107

Nettles 1.13×107

Halpin 1.18× 107

Inplane 1.18x107
Patran 1.18× 107

2.1× 106

2.1× 106
3.47× 106

3.48× 106
3.48× 106

3.22× 106

3.22× 106
3.08× 106

3.08× 106
3.08× 106

As expected, the Nettles equations provide the same solution as the exact solution. However,

these equations do not work for the nonsymmetric case. The Halpin, Inplane, and Patran solutions

overestimate the stiffness of the composite in the transverse direction and underestimate the torsional

stiffness for the composite.

It is difficult to determine the specific effects this type of inaccuracy could produce. It is the

intent of this study to indicate that these inaccuracies can be avoided by using the solution techniques

developed in the previous sections.
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5.10Determinationof Strain

Section5.9determinedtheeffectivematerialpropertiesof thelaminatedcompositeplate.It is
alsodesirableto determinethestressandstrainin eachlayerof theplate.Thisis accomplishedbyusing
constitutiveequations(177)and(178)to determinethemidplanestrainsandcurvatures.Thetotalstrain
in eachply or layeris thenfoundbyusingequation(125).Theresultingstrainsaxethentransformedby
equation(150)totheprincipalmaterialdirection.As shownpreviously,theconstitutiveequationcanbe
solvedfor themidplanestrainsandcurvatures.

Forexample,assumethelaminatedplatein thefirst exampleis loadedwith 1,000lbf in the
x direction. The plate is 5 in. wide. The x direction is parallel to the 0 ° plies. The calculations for this

example axe contained in the Mathcad solution sheet (app. D).

As stated in the problem definition, a force is applied in the x direction. The plate is 5 in. wide

so N x would be calculated as follows:

1,000 lbf
Nx - 5 in.

The load matrix in equation (187) will contain the following values:

(214)

-N x

Ny

Nay

M x

M 7

_May

-2xl0Z I

0xl0U I

0xl0 u Ilbf

0×10 v l in.

O×lOU I

O×lOU I

(215)

The midplane strains and curvatures can be determined in the same manner as demonstrated

in section 5.9. The solution indicates that the midplane strain includes axial, transverse, and shear

strains, while curvatures are zero:

Midplane Strains:

eOx= 8.82 x 10 -4

e0y = -2.8 x 10-4

7oay = -4.6 × 10 -4

Midplane Curvatures:

K x = 0x 100

Ky = 0x 10 °

Kay =0xl0 °

Equation (125) can be used to transform the midplane strains and curvatures into the strains in each ply.

To determine the strains in the first 45 ° ply, define Zply as the distance from the midplane to the center

of the ply: Zply = 2.5 × 10 3 in.
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Thestrainsin thefirst 45° ply in thex-y coordinate system are calculated from the midplane

strain and curvatures (eq. (125)). The values axe then transformed into the principal material directions

for the 45 ° ply with equation (150). The details of the calculation can be found in the Mathcad solution

sheet (app. D). The resulting matrix is the strain in the principal material direction:

3x051e2 =/5"31×10-4

_"12 [ -1.16×10-3

(216)

5.11 Determination of Stress

The stress values can be calculated from the strain by applying equation (155) to determine

the Q matrix for the given ply. The Q value for the 45 ° ply is as follows:

6.56×106 4.55×106 4.7×106]
0.=/4.55×106 6.56×106 4.7×106 lbf

[ 4.7×106 4.7×106 5.16×106] in'2

(217)

The strain in the 45 ° ply for layer 2 is determined from equation (125). Equation (156) is then used

to determine the stresses in the ply:

[x],235x03,0-y =_, ey =11.99×10_/lb--L
/-xy Yxy [ 4.6×102 ]in.2

(218)

Now use equation (148) to transform the ply stress into the principle material direction:

0"2 =Ty_ CrY =17"23X102 lbf

/'12 /'xy [-1"16×103] in'2

(219)

5.12 Determination of Displacement

The deflection of the plate is found from the midplane strains and the curvatures of the plates.

Since these values are known, the deflections can be found by integration:
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,x2 ,x21s:2)_C = jx 1 eoxdX - zyz jx 1 1 -Kxdx dx
(220)

The limits of integration are along the edge of the plate. In the example, the plate is symmetric. As a

result, the coupling stiffness matrix and the curvatures are zero. The Mathcad solution sheet (app. D)

includes the calculations; the curvature values axe included for the nonsymmetric case. In the example

problem, the deflection in the x direction is calculated as

Ax = 8.82 x 10-3in. (221)

5.13 Determination of Neutral Axis

The neutral axis is the plane of zero strain for any direction in an unsymmetrical plate.

The location of the plane may be determined from equations (125) and (187). For pure bending

in the x direction, the force and moment matrix is zero except for the moment about the x axis:

0

0

0

M x

0

0

-A11

A21

A31

Bll

B21

B31

A12 A13 Bll B12 B13

A22 A23 B21 B22 B23

A32 A33 B31 B32 B33

B12 B13 D11 D12 D13

B22 B23 D21 D22 D23

B32 B33 D31 D32 D33

EOx

EOy

)"Ox_

K x

Ky

_Kxy

(222)

Solving for the midplane strains and curvatures and then reducing the matrix equation yields

the following expression:

EOx

EOy

_Ox7

K x

Ky

_Kx7

Bll

B21

B31

D11

D21

_D31_

-1

m X .
(223)

The above equation can then be separated to form an expression for the midplane strains and curvatures.

Equation (125) can then be used to find the location of the neutral axis. These derivations are contained

in the Mathcad solution sheet (app. D).
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5.14 Comparison of Results to a Finite Element Model

A finite element model of a simple plate is developed to verify the previous set of equations.

The plate is 10 in. long and 5 in. wide. As in the previous example, the plate has four layers oriented 0 °,

45 °, 45 °, and 0 °. As shown in figure 78, the plate is clamped at the left end with a load of 1,000 lbf

applied at the right. The model uses MSC/Nastran as the finite element code.

5 in.

J

J

J

J

J

J

J

J

x

I.i lOin.

Figure 78. Boundary conditions on finite element model.

The input for the composite material properties was calculated using equation (187). The effec-

tive material properties from equation (187) for the model were defined in the MSC/Nastran format by

using a MAT2 card. The input for the MAT2 card is represented by the following matrix equation:

=/G21G22
T12 LG31 G32 G33J _12 La3J

(224)

For the purpose of this example, the thermal effects are neglected. The above equation becomes

the stress-strain relationship of equation (139). As previously discussed, Q is the stiffness matrix where

Q

1 -V21

E1 E2

-v21 1

E1 E2

0 0

0

0

1

G12

-1

(225)
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The material property data for the finite element code axe calculated using equation (225).

The MAT2 input card is written to reflect the following Q:

_

Gll G12 G13]

G21 G22 G23/=

G31 G32 G33J

-2.013×107 3.926×105 0 ]

3.926 × 105 1.309 × 106 0 | lbf

0 0 1.001×106] in'2

(226)

The properties of the composite plate are defined by the PCOMP command. This input is unique

to the MSC/Nastran code and requires no calculations. The input is listed for completeness as follows:

PCOMP, 1,,, 10000.0, STRN,

+, 1, .005, 0.0, YES, 1, .005, 45.0, YES,

+, 1, .005, 45.0, YES, 1, .005, 0.0, YES .

The ply stress and strain in the principal material directions axe calculated using the Mathcad

solution sheet with the geometry and loading from the example problem. The results axe provided and

compared to the results of the finite element model below.

These results axe the ply strains in the principal material direction for the 45 ° ply:

• Laminated plate theory results:

[e 2 = / 5.283 x 10 -4

Y12 [ -1"166 x 10-3

(227)

• Finite element model results:

I 3x°51= | 5.31×10 .4

_12 [ -1.16×10-3

These results axe the ply stress in the principal material direction for the 45 ° ply:

Laminated plate theory results:

[02 =/ 7"194×102

/12 [ -1.1673×103

(228)

(229)
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• Finiteelementmodelresults:

o-2 = 7.23 × 102

T12 -1.16×103

(230)

The deflection of the plate in the direction of the load (x) compared very well with the finite
element model:

• Laminated plate theory results:

Ax = 8.8 × 10 .3 (231)

• Finite element model results:

Ax = 8.8 × 10.3 (232)

The comparison of the results shows that the finite element model agrees perfectly with the Mathcad

solution for the plate under uniaxial load.

5.15 Conclusions From Laminated Plate Theory

As stated previously, the purpose of the laminated plate derivations and the development of the

Mathcad and finite element solutions is to create methods for the analysis of complex multilayered,

graphite-reinforced cementitious composite structures. The development of the Mathcad solution sheet

proved that there is no numerical constraint to the laminated plate theory as found in the transform

section theory (sec. 1.4). In addition, it has been determined that the material property data developed

previously axe adequate for the analysis of any conceivable combination of layers and graphite orienta-

tions. An improvement has also been made to the accuracy of the solution method used to solve the

laminated plate equations.
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6. ANALYSIS OF MULTILAYERED SYMMETRIC AND NONSYMMETRIC

GRAPHITE-REINFORCED CEMENTITIOUS BEAMS

Section 6 demonstrates that cementitious composite material can be analyzed using the laminated

composite plate theory. Section 5 verified the laminated plate equations for an arbitrary composite by

comparison to the results of a finite element model. The equations will now be applied to the analysis

of three graphite-reinforced cementitious beams subjected to pure bending.

The rule of mixtures is used to determine the effective E 1 and E 2 values. The shear modulus

and Poisson's ratio values axe taken from the results of the material properties tests. The laminated plate

theory is then used to determine the effective material properties for each of the beams. These properties

are used with the elastic beam equation to predict the deflection of each beam. The results from the

analysis axe compared to the results from the test. In addition, the laminated plate equations axe used

to derive a set of material constants for a finite element model. The results from the model are also

compared to the test results.

6.1 Introduction

As shown in figure 79, each beam will consist of two graphite-reinforced layers. The graphite

mesh in the first beam will not be rotated. In the second beam, both layers of the graphite mesh axe

rotated 45 ° . In the third beam, the bottom layer of graphite is rotated 45 ° while the top layer will not

be rotated, producing a nonsymmetric laminated section.

Gra Mesh

Matrix Center Line

Figure 79. Cross section of multilayered composite beam.
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In eachcase,thelaminatedplateequationsaxeusedto determinetheeffectivematerialconstants.
Elasticbeamequations,developedin section4.11,axeusedto determinethedeflectionatthecenterof
eachbeam.Theanalysisisrepeatedfor severalloadincrementsto producealoadversusdeflectionplot.

A finiteelementmodelis developedfor eachbeamconsistentwith themethodologydeveloped
in section4.12.TheMSC/Nastranfiniteelementprogramis giventhedatafor eachlayerin theformof
MAT2andPCOMPinputcommands.Thefiniteelementmodelcomputesthedeflectionatthecenterof
thebeam,andthemodel is runwith incrementingloadsto producetheloadversusdeflectionplot.

Finally,acomparisonis madebetweentheanalyticaldataandthetestdata,andconclusions
aredrawnbasedontheseresults.

6.2 Three-Section (Pure Bending) Testing

The beam is placed in a three-section bending test with the specimen supported over an 8.75-in.

span and loaded at two points, each located 1.375 in. from the center of the span. This is the same three-

section bending test that is described in section 4.10.

The deflections were measured at the center of each beam using a digital deflection gauge

(fig. 80). A cup was hung from the loading hook of the fixture. Loading was achieved by incrementally

placing a measured amount of lead pellets in the cup. The time between load increments was not con-

trolled but could be estimated at -_30 sec. The displacement was recorded at each load increment. Each

beam was tested by the same method and with the same loading increment.

Figure 80. Three-section bending test.
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Theresultsof thebeamtests,illustratedin figure81,showthatbeam1[90,90]ismuchstiffer
thanbeam2 [45,45].As expected,beam3 [45,90]hasastiffnessvaluebetweenbeams1and2.The45°
layeris onthetensionsideof thepurebendingtest,whichmayexplainwhy thebeambehavioris close
to beam2.

-g
e_

1,600

1,400

1,200

1,000

8OO

6OO

4OO

2OO

0

.....• ------Beam1 [90,90] ....._-----Beam2[45,45] .....a------Beam3 [90,45]

.,,,.f

j,_'J ,N.+

..... E;ILD.[-- -....

0 0.02 0.04 0.06 0.08 0.1

Deflection(in.)

Deflection plot of multilayered beams.Figure 81.

0.12

6.3 Calculation of the Deflection Using Elastic Beam Equations

The deflection of the center of the beam was calculated for the same loads used in the three-

section bending tests. The elastic beam equation for this problem was provided in section 4.10.

The moment of inertia is calculated by I = bh3/12. The Young's modulus is calculated from the lami-

nated plate theory. The Mathcad solution sheet (app. C) is used to perform the calculation to determine

the deflection at each load increment.

6.4 Determination of Effective Material Properties

The material properties for each layer of the composite axe determined from the rule of mixtures

and the laminated composite plate theory. For example, using the equations developed in section 4.11,

the material properties of the fiber and matrix are as follows:

Efibe r = 33.5 × 106 lbf/in. 2

Ematrix = 115.1 x 103 lbf/in. 2 (233)
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Theareaof thegraphitematerialiscalculatedfromthemanufacturer'sdataas

Ayar n = 0.000175 in. 2 Nyar n = 8

Afibe r = Nyar nAyarn •

The area of each layer is the thickness multiplied by the width A 1 = 0.120 in. × 1 in.:

_ Afiber
Vfiber

A 1
- 0.012

Vmatrix = 1 - Vfibe r = 0.988 .

Thus, the values for the effective material properties can be calculated for each layer:

• Young's modulus (direction 1):

E 1 = VfiberEfiber + VmatrixEmatrix

E 1 = 5.045 x 105 lbf/in. 2

(234)

(235)

(236)

This procedure is used to determine the effective Young's modulus for each layer in the composite beam.

The shear modulus and Poisson's ratio values axe determined from the material test results

(sec. 4.14). These effective properties are used with the laminate composite plate equations to determine

the effective material properties for the composite beam.

The Mathcad solution sheet (app. D) was set up for a two-ply plate consistent with the procedure

for determining the effective properties of a multilayer composite plate, described in detail in section

5.9. The bottom entry in each property array corresponds to the bottom ply of the plate and the geomet-
ric center of the beam is considered zero:

[7.5x104] lbf =[0.15]G12 = 7.5x104]in.2 v12 L0.15j. (237)

-5.0x105 ] lbf

El= 5.0 × 105 ]_.2

-5.0×105 ] lbf

E2= 5.0x 105 ]_.2
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Theorientation,thickness,andcentroidof eachply axeasfollows:

t=Lo.125 j . thickness z L-.°625J. centroid 0=1---_L45 j plyangles"
(238)

The thickness of each layer is one half the beam thickness. It should be noted the exact thickness of each

beam varies (0.24 to 0.27 in.) due to imperfections in making the beams. The centroid of each layer is

measured from the geometric center of the beam.

The compliance matrix is then calculated for each layer in the composite. The stiffness matrix

(QT_) is then formed from the inverse of the compliance matrix:

SF/=

1 -V21rz 0

EI_I E2r_

-v12rz 1
0

EI_
1

0 0

G12_l

= -1 (239)

The subscript n refers to the layer number.

A stress transformation matrix is calculated from the angles given in the 0_ array:

L

cos 02 sin 02 2 sin 0yzcos 0yz

sm0yz"2 cos02 -2sin0yzcos0yz

- sin 0yzcos 0yz sin 0yzcos 0yz cos 02 - sm0yz"2

(240)

m

The Q matrix can then be calculated from equation (241):

Q_ = Ty_IQy_RLR-I " (241)

105



TheextensionalmatrixA can now be calculated from equation (242):

plies [1.10 × 105

=
3.70 x 104 0

1.10xl05 0

0 3.65 × 104

lbf (242)
in.

The coupling stiffness matrix B, for a nonsymmetric matrix, can also be calculated from equation (243):

plies

B= Z Oktkzk =
k=l

1.11×103 -1.11×103 0

-1.11×103 1.11×103 0

0 0 -1.11×103

lbf

in. (243)

The bending stiffness matrix D, equation (244), completes the calculations of the stiffness terms:

plies {,3 , [5.73 × 102 1.93×102 0

5.73 × 102 0

0 1.9×102

lbf (244)
in.

The global stiffness matrix from equation (246) can then be determined by combining the A, B, and D
matrices:

Global =

1.10×105 3.70x 104 0 1.11×103 -1.11×103 0

3.70x104 1.10×105 0 -1.11×103 1.11×103 0

0 0 3.65×104 0 0 -1.11×103

1.11×103 -1.11×103 0 5.73×102 1.93×102 0

-1.11×103 1.11×103 0 1.93×102 5.73×102 0

0 0 -1.11×103 0 0 1.9×102

• (245)

Equation (246) is written in terms of the global stiffness matrix as
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Ny COy

NxY = [Global] 70xy
Mx Kx

My Ky

_M xy _ _K xy
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Additionally, equation (246) can be solved to determine the effective material properties

of the composite beam:

E x Nx - 3.41×105 lbf -e°Y - 0.42
- heox in.2 Vxy - Eox

Ny lbf -e°x - 0.42
Ey - heoy - 3.41× 105 in.2 Vy x - EOY .

_ Nxy _ lbf
Gxy - __ _ 1.20×105 in.2

h7o_
(247)

The analysis was repeated for each of the three composite beams. Table 12 contains the effective

material properties for each beam.

Table 12. Effective material properties.

Ex Ey Gxy
(Ibf/in.2) (Ibf/in.2) (Ibf/in.2)

Beam1 [90,90] 4.12x105 4.12x105 7.50x104

Beam2 [45,45] 2.40x105 2.40x105 1.88x105

Beam3 [90,45] 3.20x105 3.20x105 1.15x105

6.5 Comparison of Test Data to Analytical Predictions

The effective material properties can now be used with the elastic beam equation (124) to calcu-

late the deflections in the beam. To illustrate the steps in the analysis, the results obtained for beam 1

at a typical load increment follow:

Y2(X)=-_(Pax2 +C3x +C4)
(248)
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E = 4.12x105 lbf (249)
in. 2

I- bh3 _ {_{tl.189in./tO.265 in./3_ =0.00184 in. 4 (250)
1212

x = 4.375 in. (251)

C3 = -25.39 lbf/in. 2

C4 = 8.707 lbf/in. 3

(252)

(253)

Y2 = 4,2x,OS ) OOO,84m4 
(1.94 lbf)(3 in.)(4.375 in.) 2 ]

+(-25.39 lb-_-_](4.375 in.) + (8.707 .lb-_-_]
k in.j k m. J

(254)

Y2 = -0.062 in. (255)

The above analysis is repeated at incremental loads to generate a load versus deflection curve for each
beam.

The results of the three-section bending test can now be compared to the results calculated using

the elastic beam equation with the effective material properties derived from the rule of mixtures and the

laminated composite plate theory. A measure of the possible error associated with these calculations is

determined as follows:

• Error from Young's modulus test = 6.4 percent

• Error from shear modulus test = 5.6 percent

• Error% = _(6.4%) 2 +(5.6%) 2 =8.5% .

Error bars on figures 82-84 will reflect this measure of error.

As shown in figure 82, the predicted deflections for beam 1 [90,90] are in good agreement with

the test results, indicating that the effective Young's modulus used in the predictions, Ex = 4.12 × 105 lbf/

in. 2, adequately predicts the behavior of this two-layer composite.
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Figure 84. Beam 3 comparison of predicted versus test deflections.
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Figure83comparesthepredicteddeflectionsfor beam2 [45,45]with testresults.Thedata
comparereasonablywellwith thetestresults,indicatingthattheeffectiveYoung'smodulususedin the
predictions,E x = 2.31 × 105 lbf/in. 2, also adequately predicts the behavior of this two-layer composite.

Figure 84 illustrates the results for the nonsymmetric beam 3 [90,45]. The test data for beam 3

[90,45] compare very well with the test results. The effective Young's modulus calculated for this beam,

E x = 3.2 × 105 lbf/in. 2, was calculated using the same methods as the previous symmetric beams.

Based on these results, it can be concluded that the solution to the constitutive equations pre-

sented can be used to accurately determine the effective material properties for a symmetric or a

nonsymmetric multilayered laminated composite.

6.6 Analysis of Beams Using Finite Element Methods

The analysis of simple composite structures such as beams can be achieved using the methods

described in this TM. However, when the geometry or loading of the structure becomes more complex,

this method of analysis may be too difficult to apply. For that reason, it is important to extend the verifi-

cation process to include finite element modeling.

The input for the MSC/Nastran program is calculated from the equation for the stiffness matrix,

equation (257), QTz= [STz] 1. The MAT2 input for beam 1 can be taken from the QTzmatrix. For example,

the stiffness matrix for layer one of beam 1 [90,90] is calculated and given:

4.30×105 6.45×104 0 ]
Q1 = 6.45×104 4.30×105 0 .

0 0 7.50×104

Incorporating these values into the MAT2 results in the following:

$ Description of Matrix Material:

MAT2,1,4.30+5,6.45+4,0.0,4.30+5,0.0,7.50+4,

0., 0., 0., 0., 0.

The orientation of each layer is described in the PCOMP command. An example of the PCOMP

command for beam 1 is provided below for reference:

$

PCOMR 1,,, 10000.0, STRN,

+, 1, .1325, 90.0,YES, 1,.1325, 90.0,YES

$

The finite element model is generated in the same procedures as those verified in section 4.12.

(257)
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Figures 85-87 show that the results of the finite element models for each of the three beams

are in agreement with both the test data and the analytical solution from the elastic beam equation (86).

Beam1 [90,90]

9

BeamEquation ...._ FiniteElementModel

.4

3

2

0 0.02

Figure 85.

0.04 0.06 0.08 0.10 0.12 0.14

Deflection(in.)

Beam 1 comparison of finite element versus test deflections.

5.0

4.5

4.0

3.5

3.0

Beam2 [45,45] ....._......BeamEquation ....._----- Finite ElementMode

2.5 _"

2o
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Figure 86. Beam 2 comparison of finite element versus test deflections.
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Figure 87. Beam 3 comparison of finite element versus test deflections.

6.7 Summary and Conclusions

The preceding results indicate that cementitious composites can be analyzed using the laminated

composite plate theory. This is a significant improvement over the methods based on the rule of mixtures

and the transform section methods. The composite plate theory has no limitations on the orientation of

the fibers or the geometry of the layup. As a result, the designer can strategically place and orient the

reinforcement fibers to optimize the design.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

This research establishes the procedures for producing, instrumenting, and testing graphite-

reinforced cementitious specimens to determine the material characteristics. Tensile tests are used to

successfully determine Young's modulus and Poisson's ratio. Iosipescu shear tests axe used to determine

the shear modulus. Comparisons axe then made to the material properties calculated from the mechanics

of materials approach for composite analysis; i.e., rule of mixtures. Consistent with the literature, 2,9,1°

it is determined that the rule of mixtures is accurate for determining the effective material property, El,

provided the fibers axe continuous and aligned in the direction of the load. However, the remaining

material properties, E 2, v12, and G12 may not be accurately predicted by the rule of mixtures.

A modified transform section approach is used with the E 1 value from the rule of mixtures to

accurately predict the deflection of a beam in pure bending with a single layer of graphite reinforcement.

A similar approach is used for a multilayered beam in pure bending. The beam analysis is extended to

include nonlinear material properties. The results compare well to test data.

Laminated composite plate theory is investigated as a means for analyzing even more complex

composites, consisting of multiple graphite layers oriented in different directions. Equations for the

effective material properties are derived based on the laminated composite plate theory. The equations

are arranged to form a system of simultaneous equations from which an exact solution can be found. A

Mathcad solution sheet is developed to make the calculations. An increase in accuracy is demonstrated

when this solution method is compared to other solution methods. The results of the Mathcad solution

sheet axe verified with an example problem. A composite plate with known material properties is ana-

lyzed using the Mathcad solution sheet. The plate is then analyzed using a finite element model. The

results compare very well, demonstrating the accuracy of the solution method.

The analytical methods developed in this TM are demonstrated with the analysis and test of three

beams with various ply angles and layups. The effective material property for each beam is determined

by using laminated plate equations and the Mathcad solution program. In addition, a finite element

model is developed for each beam. The results of three-section bending tests axe then compared to the

analytical results to determine the accuracy of the methods developed in this TM. The analytical results

compare very well to the test results.

The research presented establishes a methodology that can be used to determine the deflections

and stresses in graphite-reinforced laminated composites. In addition, it demonstrates methods of deter-

mining the appropriate material properties necessary for the analysis.

113



APPENDIXAmMATHCAD SOLUTION SHEET: RULE OF MIXTURES

Note: This program is provided as an example only. The content of this file is similar to that

found in the text. However, this program is subject to modification and may not match the previous text.

A.1 Rule of Mixtures for a Composite Material

The rule of mixtures is a method for determining the effective properties of a composite material
based on the contributions of the individual constituents. This method assumes that the strains in the

fiber direction of a composite axe the same in the fibers as in the matrix. Since the strain in the fiber

is the same as the strain in the matrix, the sections normal to the fiber direction remain plane after

stressing:

• Determination of E 1

0-1

Detormed

w

; Direction 2

:, Matrix t
;................ J----._Direction

q L

0-1

1
The strain in direction 1, the fiber direction, is given by

T"

The strain in the fiber direction is same for the fiber and the matrix:

Applying Hooke's law and assuming both the fiber and the matrix axe linear:

115



This relationship is similar to two springs acting in parallel. The total load (P) is carried by the load

in fiber (P/) and the load in the matrix (Pet):

FIiI-F I IiP .

P

6

The force equation can then be written in terms of the stress and area:

|

c_l_Al;__er:A_er + _t_'Arnat_.

Now substitute the Hooke's law equations for the stress terms to relate the force equation in terms

of strain and Young's modulus:

|

El:_iiAl!=_er:_I'A_er _ Emat_l :Amat_ •

Simplifying the equation,

E_natm,Amatrix

Ai Ai "

The fiber volume fraction (Vfiber) and the matrix volume fraction (Vmatrix) can be defined as

.... AI:I

..... AI:: "

In addition, the fiber volume fractions must satisfy the equation:

+ :-l'.
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Thus the expression for the effective Young's modulus in direction 1 is as follows:

.... |
El;-V_e::_e: _ Vmat_t_ •

Determine the effective property in direction 2, perpendicular to the fiber direction,

w

(Y2

I
I

i Matrix I

.J.

I Direction 2 I
i

l i Matrix _' , .

G 2

Deformed

The fiber and matrix transverse strains axe not assumed to be equal. However, in the transverse

direction, the cross-sectional areas are equal and the load is constant across the area; therefore, the stress

is equal for the fiber and the matrix. Then the strains in the fiber and matrix can be written in terms

of the stress:

|
_2

and

|

_2::=
E2 '

|

The total transverse deflection is the sum of the fiber deflection and matrix deflection:

.... II
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Defining the strains in terms of the deflection:

82:=,
W

and

_f_ef:=_ .....
_er '

_wm_t_
' :=

_mat rLx :_tm "

The transverse dimension over which the fiber and matrix strains act can be written in terms

of the fiber volume:

and

hf e:

L,mattix ;-Vmat_, _ •

The deflection equation can now be defined in terms of strain:

|

Now the w term vanishes from both sides of the equation. Hooke's law equations
can be substituted for the strains:

i

:::: :

The stress term now vanishes from both sides:

i v_er v_t_ix'

F-,mat_"

Solving the above equation for the E 2 term,
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Determination of the Poisson's ratio between the transverse and the fiber directions:

12 :=
el

0-1

Deformed

i Matrix

;; _F Fiber

" i
i

', Direction2 i

: t i' Matrix i
............. J-----_Direction 1 ........ i

zXL 0-1

As shown above, the deflection equation can now be defined in terms of strain:

I

8_t_
v_t_i =

I

_er
V_er :=

and

Now simplify,

I

82 8_er _ 8_t_ _
:=.... +[v_t_,d,

Substitute in the equations for the Poisson's ratio:

_!12:;-_erTiV_ier÷ __t_'V_t_! •
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Determine the shear modulus (G12) by assuming the shearing stress on the fiber and the matrix

is the same. This assumption means that the shear deformation can be written as

|

............

• Shear strain in the matrix:

|

......... O_r •

• Shear strain in the fiber:

712 := _.
.... ..... lz

W

Matrix

Direction2

Matrix
Direction1

,, L ,'l

Shear strain in the fiber and transverse direction.

The shear deflection is a function of the shear strain and the width (w):

and
|

:=_er ÷ _-r_trix •
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T

,/ ..................... _ ....
Matrix ,"

,/ gFiber

T!
!

/

/ Direction 2

/MatrJx DJrectJon1 /
_, ....................................... i

S Deformed

........ 7

i •

i

!

I

t

I

;1
"I b_--- zx ----,

L m,I

As shown in the previous equations, the deflection for the matrix and fiber can be stated in terms

of the volume fractions, Vfibe r and Vmatrix:

and

_ (V_er _').

Then, substituting into the deflection equation and allowing the w term to vanish:

|

)' :-)'matrx Vmat_ _ "_'_er Vf_er •

Finally, substitute the Hooke's law equations for shear strain and allow the shear stress:

|

..... _t_ ...... _er

Now, this equation can be simplified by allowing the shear stress term to vanish and solving for G12:

Gi2

Calculate the effective material properties of a cementitious composite:
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• Material properties:

_t_:= io3_bf
.... . 2

vmat_ := 02_ v_er := 0:30

....;ii_f
o64 

G_t_= 4n_ × io4_

Fiber area in a graphite yam:

> 2

= oool?J,m

Gt_er = i28g× loT_

Nyanl i= g

v_eii= ---
Ai

Thus, the expressions for the effective material properties can be calculated:

• Young's modulus in direction 1"

and

..... .....,,; •
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• Young'smodulusin direction2:

and

E2
• 2

• Poisson's ratio:

and

• Shear modulus:

v =[0:27.

Omat_!O_e:
Of2!_

and

× io_.
_l.rl(? i

• Composite Density

and

PeompOAte :-V_e:" ÷ P_t_:Vmatm

....... tbf

it':

Now compare the results from the rule of mixtures to the results of tensile testing.

123



• Young's modulus from the tensile test:

:: , 2

......(SO00_ iO0_ i0-6

E_ _ 5 ilbfieSt-_3x I0 !:_ ,

and

_e_O_"i= .100 ,
..... _est .........
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Krenchel methods:

• Calculate the effective material properties of a cementitious composite:

]_--

•2 .... . 2
m

v_t _ :-027 _er := 0:30

iuf luf

Efiber

• Fiber area in a graphite yam:

A_o_;--¥!Y: :- o:24i,:_

_eaxa !-i J_53

_io-:i
A_er

V_e_ ;--_
..... A i

_= iV_er=gigg99xlO -3_ V_t_=P#OOixtO -I....

Thus, the expressions for the effective material properties can be calculated:

Eil- V_er_er _ V_t_r_t_.
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• Young'smodulusin direction1"

• Young'smodulusin direction2:

El=4i_513xi05_ •
iil.riiii?

and

Poisson's ratio:

=:: :o:::bf
•¸2¸¸¸¸¸
m

and

vI2 := _e_iVfiber • vmat_Vmat_

..............._.......-i

• Shear modulus:

and

and

Orr_t_Gf_el,
Oi21-

Vmat_ Of_e:_:V_e: Oma:_

Composite density:

ate= 4;7_08

PCompe_ite := P_:er:V_er÷ O:_:Vmatli_

Pcomp0site=3_51 :×101:

Now refer to Krenchel, p. 29:
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Krenchelcase2a

al;= i

Krenchelcasela

........
Fr:iOt,Of:_ _ cos _+'y,r

FactO_= 25 X i0-!

• 2:

n:!=il

1 _mat_
=i:o67s6_:lo°

'_mat_
_cOmioo_ite:

: JJ

_2= i;ooo7_×io°

E,£c;=

F_o=4_::i3x :0_ibf
•:::2
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....A!!2i;

iill iiiiiiiiiiiiiiiil;¸i................_,;

Direction of the Load

• Krenchel case 2b

These angles describe the load in relation to the fibers (see Krenchel 3, pp. 17 and 26).

The n represents the number of groups of fibers; in this case, two groups:

hi= 2 •

This represents the proportion fibers in each group; half of the fibers are in group 1 and the other half

are in group 2:

• Efficiency factor:

.........4......

n io_

Makes the derivations easier (p. 27):

i
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• Page 34 equations:

• Volume fraction for the fiber:

a2n_J

_oi_posit_-_73399_ io-!

Guess values to make the program solve:
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Solvethreeequationswith threeunknowns:

_Omposite= 4:_5i3 x i05Ibf
........ .... . 2

Now use equation (39) to calculate shear modulus, p. 29:

................... .......2 2 ..........2 ......2i

OcompoSite= 4_233 x i04q
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APPENDIX BmMATERIAL PROPERTIES DATA
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Figure B. 1. Tensile test summary--six test articles.
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Figure B.2. Average transverse strain--five test articles.
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Figure B.3. Average tensile strain Dec 28 4.
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Figure B.4. Average transverse strain Dec 28 4.
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Figure B.5. Average tensile strain Dec 28 5.
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Figure B.6. Average transverse strain Dec 28 5.
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Figure B.7. Average tensile strain Dec 28 6.
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Figure B.8. Average transverse strain Dec 28 6.
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Figure B.9. Average tensile strain Dec 28 7.
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Figure B.10. Average transverse strain Dec 28 7.
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Figure B.11. Average tensile strain Dec 28 8.
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Figure B. 13. Average tensile strain article SG4.
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Figure B. 14. Iosipescu shear test articles.
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Figure B. 15. Iosipescu shear test--axticle 2.
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Figure B. 16. Iosipescu shear test--axticle 4.
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Figure B. 17. Cementitious material tensile strain.
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APPENDIX CmMATHCAD PROGRAM FOR COMPOSITE BEAM IN BENDING

Note: This program is provided as an example only. The content of this file is similar to that

found in the text. However, this program is subject to modification and may not match the previous text.

C.1 Mathcad Solution Sheet: Calculate Deflection for Three-Section Bending TestmOne

Graphite-Reinforced Section on Top With Linear Material Properties

C.I.1 Calculate the Deflection for a Beam in Pure Bending

The rule of mixtures method for calculating the effective material properties for a composite

beam will be verified by comparison to test data. A composite beam was made to the following
dimensions:

• Graphite strands:

Wg!=li20 m :llS;m .

• Composite section:

GraphiteSection

MatrixSection

The fiber volume can be determined from the geometry of the test specimen. This test specimen

has nine yarns across the width:

= > 2

A_ = O00i?:,:m

Ai i:::;i A: v e: i:o-?
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Thevolumefractionfor thematrix:

Vmat_ i=I--V_e i

The material properties of the graphite and matrix axe the same as previously defined:

.... . 2 ...... .2
m

_mat_ := 027 _ffoer:= 030

lbf:.... l_f
o64,

_'.n'tat_ _e_

...............4ibf 2gg 107lbfO_er= i x
.... 2 . 2

11"3

The effective material properties for the composite section of the beam carl be calculated:

• Young's modulus in direction 1"

V_er:_er _ V_t_:_trix

• Young's modulus in direction 2:

: : 5lbf
E l 49602 x i0

•2

=i: ×io5 bf .
• 2

• Poisson's ratio:

Vt2 := V_er V_e_÷ _mat_Vmatm
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• Shearmodulus:

Omat_?O_e_

..... _er _ V_er, Gmat_

Composite density:

• 2
m

PcompOsite ;= P_eilV_er _

; _'1 ¸ )

Now consider the composite beam composed of two homogenous materials• The top section of

the beam is made from a material whose properties axe calculated from the role of mixtures• The remain-
der of the beam is made from the matrix material• The moment of inertia for the beam can now be

calculated using the transform section method:

EI

• Ratio for transform section:

Y1= 4:3t3.

• Transform section by multiplying the width of the graphite sections by 77:

Wg n

• Now calculate the centroid of the transformed section:

Calculate the area of the top section:

142



Locatethecentroidof thetopsection:

Calculatetheareaof thematrix:

• Calculatethecentroidofthematrix:

C.1.2

Equationto findthecentroidof thetransformsection:

Yb =.

The Centroid of the Transform Section

The cross section of the composite is symmetric in the x direction• The x location of the centroid
is the center of the beam:

_i= -- .
2

• Calculate the moment of inertia for the top section of the beam by using the parallel axis theorem:

and

• Moment of inertia of the top section in respect to its centroid:

• Area of the top section:

Ig:=_2!b!_ 3
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Distancefromthecentertop sectionto thecentroidof thesection:

•

• Applying the parallel axis theorem:

_totNi=Ig÷Ag _ •

• Total moment of inertia for the top section with respect to the centroid of the entire beam:

Now, using the same methods, calculate the moment of inertia for the matrix (bottom) section
of the beam:

and

• Area of the matrix:

hi-N,

Ac !=b:h•

• Distance from the center of the matrix section to the centroid of the section:

• Moment of inertia for the matrix with respect to the centroid of the beam:

!c_tOt_:-!c ÷ Ac!d2

• Total moment of inertia for the transform section:

.......................... 3 4
m •
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Thebeamwasthensubjectedto athree-sectionbendingtest.A rigorousanalysisof thebeamtest
wasperformedto establishabaseof comparisonto finiteelementmodelingandtestdata.Thecompari-
sonwill provideinsightinto theaccuracyof themethodsusedfor theanalysis.

• Free-bodydiagramof thebeam:

Derivetheequationfor theelasticcurvefromsumof themomentatx:

• Section 1, x < a:

|

i.x c2'
...... 6 ....
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• Section 2, x > a but x < b:

..... .......
E4 _=P+a_x÷C3

|

Eiiv2=_
2 "

• Section 3, x > (a + b):

i

p |

:_,_=_.alx _CS.X_ C6
2 "
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Summarize the equations. Replace the derivative with 0:

pi I

2

_,. ,. _ P, 2 _ ........ I

Values from the test fixture and the test loads:

• Maximum load from 5/2/00 test:

Load :-50
........... _Oa_ I

P !=12207!Ibf
2

Geometry of the test fixture:

a i=3!0_± b:= 2.75, L g.75_m •
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Input values to represent the boundary conditions:

/¸¸¸¸¸7¸

x::=,

Guess values to start the program to solve for the constants:

c4i-::

c2>-

c_i-::

cs!-:

C6 !=:i01__ir:3•

The elastic curve equations written to satisfy the boundary conditions:

• For the boundary condition x = 0, at x = 0, Yl = 0:

00i f;2-

• For the boundary condition x = a, at x = a Yl = Y2:

2:: :

For the boundary condition x = (a + b), at x = a + b Y2 = Y3:

......._....... P_ 2 P 3: _

.....................P 2 ......

For the boundary condition x = L, at x = L, Y3 = 0:

3 2 P 2 P S
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Findconstantsto solvetheaboveequationssimultaneously:

I :c2

I :as

I c4

I c5

(c6_

-:c_:cs :c4:c;5:c_).

Ends the program loop•

The above equations axe solved simultaneously to find the constants. The constants axe listed

below:

..................... C............. 1 i ..........3c_ = c_ _.

The value for the moment of inertia is set to the value calculated from the rule of mixtures

and the transform section method• Young's modulus for the matrix is used for the beam equations:

I i-::iiotN I = K574_ iO-:3m4

....... Slbf

Restate each elastic curve equation as a function of x:

Section 1: x < a:

FP :_ .....
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C.2.1

Section 2: x > a but < a+ b:

Section 3, x > a + b:

H _

:E:I < :_

÷ ÷:c_: ÷:6]
..... g!I_ 2 6 ....... ) "

Check boundary conditions: x = 0 and Yl = 0 and Yl = Y2 at x = a:

:_(a) =-I :9S::x:i0 m ....

Ifx = a + b, then Y2 = Y3:

!o-:!

.....................̧¸¸¸--¸¸2:
02(@: =-3:725xlO:

Ifx = L, theny 3 = 0:

C.2 Mathcad Solution Sheet:

.........................-2
02(a_ b-3Y25 X !0 .....

=sTs5

Calculate Deflection for Three-Section Bending Test--Three

Graphite-Reinforced Sections With Nonlinear Material Properties

Determination of Transform Section Properties

Cross section of composite beam:

• Number of layers:
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0.3 in.

1

,y
/

, 5in. _1 /_ GraphiteFiber

2" and Matrix Material

........................ __ _o.oa,°,
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

........................... TO5 in.

I°,°''°,°°'''°
Matrix Material

• Depth of each layer (bottom surface is zero):

,0_7_J
D != .15oJ .

::,_:7Do:)

• Modulus for the graphite:

• Modulus for the matrix

• Ratio for transform section:

rl = 4:3_3
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• Dimension of the composite section

• Dimension of the graphite section:

_g;=.

• Calculate the area of the fiber:

_er i=_ (_ •

• Calculate the area of the matrix:

• Equation to find the centroid of the transform section:

A_pi:

i-i

Arrat_ I

• Centroid of the transform section:

%az=iSx:iO: i

• Moment of inertia of the transform section using the parallel axis theorem:

_, i....::3 i....
I -:Ig::_Aged _ ::o!':::=:_: :giN:I:2 "
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• Determine the distance from the center of the graphite to the centroid of the section:

i

I
• Moment of inertia for each section:

Laye_2! :- :fOr i _ :i,3i5

ii _ !g _ A_pi idO 2

fo_ je2i4

i! I

!j_ Ic (@2

[:::.....

o:o
I°:°°=I

!_:=Io I
Iooo=i
iooiT!

:i

Moment of inertia of the five-layer composite:
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C.2.2 Calculate the Deflection for a Beam in Pure BendingmConsider the Nonlinear Nature

of the Material Properties

Beam is in pure bending (no shear) in section b. Free-body diagram of the beam:

• Sample values from the test fixture and the test loads:

o30:m Thickness of the beam

_oa_:;lbf
Load applied to beam .

• Geometry of the test fixture:

• Input values to represent the boundary conditions:

• Guess values to start the program to solve for the constants:

Ci _ !iOilbfin2 C3:= i 0 lb£in 2
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Followingaxetheelasticcurveequationswrittento satisfytheboundaryconditions:

• Fortheboundaryconditionx = 0 and Yl = 0,

• For the boundary condition x = a; Yl = Y2 and 01 = 02:

P ....... .... g C
-;Xl _ Ct--Pa'xt 3

For the boundary condition x = (a + b); Y2 = Y3 and 01 = 02:

........ _ ........... P 2
F, _.

For the boundary condition x = L; Y3 = 0:

ooi_f;_-P
2 _ "

Find constants to solve the above equations simultaneously:

(ei?

I c2

i:c3
I c4

I c5

<c6_

Ends the program loop.
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Nowcomparetheseequationswith actualtestresults:

• Valuesusedin thebeamequations:

=
. 2

The load is applied by hanging weight centered in the 'b' section:

Deflection data at the center of the 15-in. beam (x = 7.5 in.) •

_(7._:m) =-got lO-i

=.

Now repeat above analysis at each load step. Yload is the load data supplied to the elastic beam equation:

ei

&5

9!1

1 I:

I4:4

17.9

Woad=-25i0

3210

56!7

64,6
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The deflection calculated by the elastic beam equation is contained in Ycal:

:092

.i29

;167

203

12_4

yc_ i- :354

1452

J690

J_01

9t3

This Excel file contains the test data for the five-layer composite beam in bending (the UAH

canoe team supplied the test data):

k:=2i3;:g_

Te_tZDat_ :=

:WOik_heet:

The test data is compared to the results of the analysis.

:iii

::D:e_Ct_ _ centerofP_te
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This Excel file contains the results of tensile test specimens. These data will allow the program

to consider the nonlinear properties of matrix material (tension).

TeS_ ;-

iiiiiiiiiiii 

iii!3:69

Tien_ileTe_t0fMatrixMabtial
230i_i_...........................................................................................................................................................

i.50

iiiiiii_iiiiiiii

§0iii

• Assign values to stress and strain data matrix:

• Guess values to initialize the program:

bO i= i: I _2 I- 1 69 •
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UseBalaguru'smethods2(least-squaresmethods):

ii

i=l i=i i=l

i=I i= 1 i =i:

Find the minimum solution to the simultaneous equations:

• The equation for strain from the resulting values:

?.

.

Compare the results of the derivation with the actual test data.

ii iiii i ¸i̧i

200

iO00 lJO0
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Now,increasethestressto levelsexceedingthetensiontest:

• Stressequation:

.<75_)= S_si6

Assume the stress _ varies from 225 to 800 in increments of 25:

_ :-225_250:gO0 •

• Equation for the 'simulated' stress values:

i= "

Plot the simulated stress and the results from the tensile test. The simulated stress projects

the curve to higher strain values:

iiiiiiiiii_iiii;400i

• Young's modulus for the matrix changes from E to E r as the stress increases to 800:

®=::iS×:
_:-0 4

160



• In section 2 for the elastic beam equation, x > a but < a + b:

_ao_%= _=.

The beam equation has been modified to calculate the deflection at stress levels above the linear

range of the material:

...... i P 2 .................

.......... -6 ............:L:t o:( ) )

The deflection is calculated at increasing load levels:

r 0

;o_o_21
0:129 i

0:167 I
i

0:203 1

;o_2_4I
0:3547 I .

:479

:655

;825

1:009 1

1121

Compare the results of the analysis with the results of the canoe panel-bending test:
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Theanalysisis repeatedfor thepropertiesfromcompressiontestingof thecementitiousmaterial.

ThisExcelfile containsdatafromcompressioncylindertestingof thecementitiousmaterial:

We LC  pi-

_:50

Equation to calculate the compressive Young's modulus:

Te_t
.... -

"
Test 3' 1:0-

W

• The highest value is at kj = 44:

The beam equation has been modified to calculate the deflection at stress levels above the linear

range of the material:

........ i 2 ..........

....... ' lbf ...... ) "

L o..,5,j......
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• Samplecalculationatmaximumloadvalue:

--1i26312m

The results of the analysis axe listed in Ycal_3:

0092

0.129

E167

0203

;389

..,J2

.731

:976:

, t26

The results using the compressive data compare very well to both the canoe panel data

and the results from using the projected tensile.
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APPENDIX DmMATHCAD SOLUTION SHEET: LAMINATED COMPOSITE

PLATESmSYMMETRIC AND NONSYMMETRIC SOLUTIONS

Note: This program is provided as an example only. The content of this file is similar to that

found in the text. However, this program is subject to modification and may not match the previous text.

D.1 Calculation of Effective Material Properties

It should be noted that for laminates that are symmetric about the midplane; i.e., the layers above

the midplane are identical to the layers below the midplane, the B matrix will be zero. In the case of

symmetric laminates, the equations for the effective properties can be greatly reduced. However, for the

purposes of this analysis, the case of the nonsymmetric laminates will be considered:

This relationship is a system of six equations and six unknowns. The midplane strains and curvatures

are the unknowns. The A, B, and D terms are derived previously and are now constants. The force

and moment matrix can be defined to determine the effective material properties for the composite:

"Nx _

Ny

Nxy

MX

My

Mxy_

/AI la0x + AI2a0Y + Al3/0xv + BIIKx + BI2Kv + Bl3,Kxy h

A21-allx -fA22.a0y + A23.}'0xv + B21.Kx + B22.K v + B23.Kxy

A31_0x + A32_0Y + A33"/0xy + B31Kx + B32Ky + B33Kx3r

Bll.a0x + B12.a0y + B13.'/0xv + Dll.K x + D12Ky + D13.Kx3 r

B21_[ x -_B22_0Y + B23'/0xy + D21Kx + D22Ky + D23Kxy

B31a0x + B32a0Y + B33"f0xy + D31Kx + D32Ny + D33Kx3r j

The solution to this system of equations can best be demonstrated through an example problem.

The calculations for this problem will be made in a Mathcad Pro 2000 program file. Consider a lami-

nated plate made of four layers of fiber-reinforced material. The angle of the reinforcements is 0 ° and

45 ° and each layer is 0.005 in. thick.
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0=0 °

= 45° Midplane

8=45°

8=0 °

• Material constants axe obtained by tensile and shear testing of the material:

El :=2ooi,io6_ •
...... .

• Young's modulus in the principal material direction 1:

Ibf
• 2

• Young's modulus in the principal material direction 2:

:-ioo1.

• Shear modulus in the principal material direction 12:

_!2 := 030 .

• Poisson's ratio:

121:E2
_21 := _ •

E1
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These properties are used to determine the compliance matrix:

t -_t2 0

E: ....

v2i i
....... Oi<i
z2 :IE2

G12¢

° ;:i°° I
s s o I m

= .....716_6:X!o jI °x:°o ........

The stiffness matrix is formed from the inverse of the compliance matrix:

/'2 013 _ i07 3:926 _ t05 0

o :_oo:×,o6__

Geometry of the layup is then used to determine the transformation matrix:

ialya i=4 n i_ 1_:plys

Ply thickness Ply angles

tioo_

........i oo, 
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Thecenterof eachplymustbelocated:

I

ili i!_:ii ii

h

L-I' 
The transformation matrix is derived from the stress transformation equations:

T 2:2

i_o° o_io°

_o -_ _o °

S×iO -I

_!0 -i 5xiO -I t:R:lOO:][_5×_o_ 5_io-_ ox_o°
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o_io°
T4--o i_:io°

folio° oxm°

o io°

o_m°.

• Reuter's matrix:

: oo

°I
_o o 2}

The Qbax matrix represents the stiffness and transform matrix:

Each ply has a Qbar matrix:

120!×I07 393_105 0 l:lb _

6¸ 6 6¸

6 m

b ..... 6 ........ 6.......... 6
6:,6x i0....

o........._ ....i 5 i °:I

........) .......... 6 ...... 0o,
oxm ° oxio° !xio6).....
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• Calculatethetotalthicknessof thelayup:

ii=1

The A matrix or the extensional stiffness matrix is calculated:

k=l

.......... ......... 4 ............. 4
io ::o: :o_..........

lo_ :o_ 6:16x lo4 ......

The B matrix or the coupling stiffness matrix is now calculated. In the case of a symmetric

laminate, the B matrix will be zero:

k--i:

_o
B-I_o

The D matrix or the bending stiffness matrix is calculated:

....;l
;_ k I2 J

k-t

I 1
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To find a solution to this system of equations, define a matrix V to represent the forces and

moments at the midplacie of the plate• Then construct a "Global" matrix that represents the stiffness

matrix• A computer subroutine "lsolve" will be used to find the matrix for the strain and curvatures•

For the following equations to work in the Mathcad program, the matrices A, B, and D, must be made

dimensionless:

in llbf ..... t lbf4n

Define V as the force acid moment matrix• Force acid moment matrix will be set to zero initially:

N_r I

:Nxvl
VI=

M_, ]:

INy

iil;M_i

I

liM:i

:i
iiiliO

o tufi

l0

Create a global matrix to represent the A, B, acid D matrices:

_'266841.g7 49470.05 47047.8

Olobal= '

49470.05

47047.g

0

-0

0

0 -0 0

79650.66 47047.8 -0 -0 0

47047.g 6t63g.ll 0 0 0

-0 0 12.29 0.61 0.39

-0 0 0.61 1.31 0.39

0 0 0.39 0.39 1.01.
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The global matrix is equivalent to:

tAll AI2

A21 A22

A31 A32

BII BI2

B21 B22

,,B31 B32

A13 B11 B12 B13,m

A23 B21 B22 B23

A33 B31 B32 B33

B13 DII DI2 D13

B23 D21 D22 D23

B33 D31 D32 D33

Find the effective modulus in the x direction by assuming a unit force in the x direction:

!i

iOii

o ib_

0 .......

0

i__Nx̧̧ _

ii
I in

IMy

kM:;

The lsolve function can be used to solve a linear system of n equations in n unknowns:

_Ox

i

I_0_

I K_

I

isot_e(O!0b_;_ .

The lsolve function returns values for strain acid curvature matrix. Young's modulus acid Poisson's ratio
can be calculated:

Nx
•
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• Poisson'sratio

m-:
_OX xy-

Now to find the effective modulus in the y direction, assume a unit force in the y direction:

(o_:o°]
t 100

o,io°

°_l°°Jio,:o°

I N: :-v:ue
I Mx .......m

[My

<M:)

Now solve the system of equations for the strain matrix:

_Ox

i

l_0_

I Kx

[

:iso:l:e(O!:Ob_;:_•

• Young's modulus in y direction:

• Poisson's ratio:

_i_:_ _ii!__

-_Ox
_:!= .....
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Nowto find theeffectivemodulusin thex direction, assume a unit force in the x-y direction:

io io°l

o_ouI

_×_ouI_f
o×_o_I

o_io° I

(Nx5

INw

I .....v
. :=.
I

MyI

Now solve the system of equations for the strain matrix:

I_oy

I_o_

I K_

!:::K_

;= !sOiye(GlobNi_ .

The shear modulus is calculated by:

o_i=_n=. G_= 322×....io6:Ibf

D.2 Determination of Ply Strains

Section D. 1 determined the effective material properties of the plate or laminate. It is also

desirable to determine the stress and strain of each ply. This is accomplished by using the constitutive

equations to determine the midplane strains and curvatures.

For example, assume the laminated plate in the first example is loaded with 1,000 lbf

in the x direction. The plate is 2 in. wide; the x direction is parallel to the 0 ° plies:

Nx 10004bf Vi' l,lXmj,
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Theforceappliedin thex direction, set the first element of the V matrix equal to Nx. The values
in the matrix must be unitless:

o_io°

o,_o° .
o,io°

o_io°

,o io°

Now solve the system of equations for the strain matrix:

_Ox

i

I_0_

I K_

I

isot_e(O!0b_i_ •

Strains and curvatures at the midplane axe found:

_0x _oy-

Kx--0_m° Ky-0_io °

-m_j=

K_ =o io°

Transform the midplane strains and curvatures into the strains in each ply. Now determine

the strains in the first 45 ° ply. Zply is the distance from the midplane to the center of the ply:

t

n i= 2 z'.oly-25_. 10-3

i _o_
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;?.;. i!_]i..................141_!ii¸l--_1_'.'_,'_',_1'_0,I

Transform these strains into the principal material directions for the 45 ° ply:

• Transformation matrix for 45 ° ply:

_ _,iii,,5:,_;io<!'i̧
[._5 _o_i

• Transformation equation:

I I "

• Use Reuter's matrix to convert to engineering strain:

'1 ,_,.1_,,,,l_,,,,,,_,,,_,.,o_.,,,,_:i
I I

• Calculate the stresses within each ply. The stress can be calculated from the strain:

b...... 6 ........ 6........... 6o.o.,o....
×_oi _o_ 5,_6×_o_ .....
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• Transformed reduced stiffness matrix for layer n = 2:

.....k- )

......."i;.,i
• The stress for 45 ° ply in layer 2:

I_l-Iii__!oiI_

• Transform the stress into the principal material direction:

i_I_=i_1
iii iiiiii ; iimf....t ,4...../,,_,.._.,_Io,_l ,,,

t2) 1.16XlQ31 .....

D.3 Determine the Displacement of the Laminated Plate

The definition of the plate curvatures provides an equation to determine the out-of-plane

displacements for the plate. The curvature in the x and y directions is given by the following equations:

I

d2
,:=_ ..... .Kx _
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Sincethecurvaturesaxeknownvalues;i.e.constants,thenw can be found by integration:

i

/iiX2;i ¸ %¸¸¸¸¸ i ¸,

iiii iP_ix2!! ti

Jxi

Example of the integration:

• Limits of integration axe along the edge of the plate:

?il-o _ ;=o,_ ,5.

• Example values ONLY!

K_:--ii37i'%,!-_4733'

• Integrate the x curvature along the x edge of the plate:

K_i!ii--,!5'.

i

io-

i
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• Integratethey curvature along the y edge of the plate:

i :_ iiiii:-̧ ¸¸'¸¸¸'¸2¸,¸¸ililiiii!!!i!i)i¸i!i!)

The x and y deflections can be found from the strains and the curvatures:

|

ey:- z;_ w

|

ay
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Midplane Strains

_o_-io-

Midplane Curvatures

K_ = _o°

Ky o io°

-o_io°

• Remove the units:

Z

Now integrating the midplane strains and curvatures over the length x and the width y

of the plate:

rx' F
,,./.1 _):=_ _ -Kx

-x! _ k
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Now integrating the midplane strains and curvatures for the y direction:

'Yl J, _'Yi }
Yi

Y2/

D.4 Determination of the Neutral Axis

The neutral axis is the plane of zero strain for any direction in an unsymmetric laminate:

• Strain equations in matrix form:

f'xl'
"°' I
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• Purebendingin thex direction:

{0 _ !AI! Ai2 AI3 Bii Bi2 BI3! !sOx_'

I o a21 a22 A2s s2i s22 s2s

I

IM_ K_

o B21 D2i
o! .................. B3i B32 B33 K:I

• Solving for the midplane strains and curvatures:

iAil xi2 Ais sii

_all _22 _2sBii B22 B23 o

_A31

I ......................

I i

_s31

The equation can be reduced to the following:

f sOx

I_o_

I _o_

I K_

I

(sii _-:i

IB21

--B3:......M_.

ID2I

Invert the B and D matrices; if B is singular, the program will set Binvr t = 0:
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Theaboveequationcanthenbeseparatedto form anexpressionfor themidplanestrainsandcurvatures:

F"' / '
l_._l_I_il_x•

These equations axe then substituted into the strain equation:

i'
I°_1"I_'_,_'l"x__It_'' I'H

The general form of the equation to determine the neutral axis is given as guess values:

Zne_i_liO _x:-OIO Mxi=l:O

z_v:-- i o M_i= o:o.

The general form of the equations to determine the neutral axis is given as:

-- .Mx+ Binvr t .My +ex Binvrtl,1 1,2 Binvrtl,3 'Mxy "'"

+ Z neuX' (D invrt 1 ' l' M x + D invrt 1 ' 2' M y + D invrtl ' 3' M xy)

e y = B invrt1,2.M x + Binvrt2,2'MY + B invrt2,3.M xy ...

+ Z neuY' (D invrt 1,2' M x + D invrt2 ' 2' M y + D invrt2 ' 3' M xy)

_' xy -- B invrt 1,3' M x + B invrt . M y +2,3 B invrt3 ' 3' M xy ...

+ Z neuXY' (D invrtl ' 3' M x + D invrt2 ' 3 .M y + D invrt3 ' 3' M xy) •

The neutral axis is found using the Find command:

Z neuX /

Z neuY := Find@ neuX,Z neuY, Z neuXY) •

Z neuXY
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Theneutralaxisfor thisexampleis atzero:

Z neuY = I

Z neuXY

Compare these results to the results from other methods:

• Nettles equations:

A2 .... J
[ ...... .... ....A_:3

i_ettbs ibf
; ; ; . 2: ¸

....... A2i:i2i!

gYNetiiles;: h

A A 2 2A A A A A 2A 2 A 2 A 2

[ ...._i,, -:(Ai,,):%:_J J

iil
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• Halpin equations:
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...........................
: ..... j

:wNeti_:--: io:

:_A ¸¸¸¸¸2:¸ iii:

]

x_or2

: i: ..... ?ibf

......... _e ...._p_ = 3.47 x !o



..... 6 ibf
=3i0_x lO

2;2
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